The Covariant Stone-von Neumann Theorem

Lara Ismert, with Leonard Huang (University of Nevada, Reno)

Embry-Riddle Aeronautical University, Prescott, AZ

January 17, 2020

A Historical Problem

Goal: Classify pairs (A, B) of (possibly unbounded) self-adjoint operators on a Hilbert space \mathcal{H} that satisfy:

- A and B share a common dense domain $K \subseteq \mathcal{H}$ and
- $[A, B] h=i h$ for all $h \in K$. (Heisenberg Commutation Relation)

Example (Schrödinger Pair)

$Q=M_{x}$ and $P=-i \frac{d}{d x}$ on $L^{2}(\mathbb{R})$ is such a pair...is this "all" of them?

No.

Strategies for Classification

Goal: Classify pairs (A, B) of (possibly unbounded) self-adjoint operators on a Hilbert space \mathcal{H} that satisfy:

- A and B share a common dense domain $K \subseteq \mathcal{H}$ and
- $[A, B] h=$ ih for all $h \in K$. (Heisenberg Commutation Relation)

Strategies:

- Make more restrictive requirements on dense subspace K.
- Classify unitary groups generated by A and B which satisfy the Weyl Commutation Relation.

The Weyl Commutation Relation

Definition

Let G be a l.c.a. group. A pair (R, S) of unitary representations

$$
R: G \rightarrow \mathcal{U}(\mathcal{H}) \text { and } S: \widehat{G} \rightarrow \mathcal{U}(\mathcal{H})
$$

satisfy the Weyl Commutation Relation if

$$
S_{\gamma} R_{x}=\gamma(x) R_{x} S_{\gamma} \quad \forall x \in G, \gamma \in \widehat{G}
$$

Example (Schrödinger Representation)

The representations $U: G \rightarrow \mathcal{U}\left(L^{2}(G)\right)$ and $V: \widehat{G} \rightarrow \mathcal{U}\left(L^{2}(G)\right)$ given by

$$
\left(V_{\gamma} f\right)(y)=\gamma(y) f(y) \text { and }\left(U_{x} f\right)(y)=f\left(x^{-1} y\right) ; \quad \forall y \in G
$$

satisfy the Weyl Commutation Relation.

Question: Is this "all" pairs which satisfy the WCR? Yes.

Classical Stone-von Neumann Theorem

Theorem (Stone-von Neumann / von Neumann Uniqueness)

Any pair of unitary representations (S, R) of G satisfying the WCR must be $(S, R) \sim \oplus(V, U)$.
(1) Corollary. If A and B generate unitary groups S and R which satisfy the WCR, then

$$
(A, B) \sim \oplus(Q, P)
$$

(2) Unfortunately,
(A, B) is a Heisenberg pair $\nRightarrow(S, R)$ is a Heisenberg representation.
(3) Moral: Must determine when (A, B) generate unitary groups which satisfy the WCR...which depends on the common domain $K \subset \mathcal{H}$.

Theorem (Stone-von Neumann / von Neumann Uniqueness)

Any pair of unitary representations (S, R) of G on \mathcal{H} satisfying the WCR must be $(S, R) \sim \oplus(V, U)$.

Initial Goal: Extend Stone-von Neumann Theorem to unitary group representations on Hilbert C^{*}-modules, denoted X.

- Define appropriate extensions of
- "satisfying the WCR" on X, called a Heisenberg representation, and
- the Schrödinger representation (U, V) on $L^{2}(G)$
- But wait!
- Now there's a C^{*}-algebra \mathcal{A} with right action on X ,
- and we also have a I.c.a. group G...

Larger Goal: Extend Stone-von Neumann Theorem to representations of C^{*}-dynamical systems on Hilbert C^{*}-modules.

Theorem (Huang-l., 2018)

Every $(G, \mathcal{K}(\mathcal{H}), \alpha)$-Heisenberg representation is unitarily equivalent to a direct sum of copies of the $(G, \mathcal{K}(\mathcal{H}), \alpha)$-Schrödinger representation.

(G, \mathcal{A}, α)-Heisenberg Representations

Definition

A (G, \mathcal{A}, α)-Heisenberg module representation is a quadruple (X, ρ, r, s) with the following properties:

- X is a (full) Hilbert \mathcal{A}-module.
- $\rho: \mathcal{A} \rightarrow \mathcal{L}(\mathrm{X})$ is a (nondegenerate) $*$-representation.
- $r: G \rightarrow \mathcal{U}(\mathrm{X})$ and $s: \widehat{G} \rightarrow \mathcal{U}(\mathrm{X})$ are unitary group representations.
- (ρ, r) is a covariant homomorphism of (G, \mathcal{A}, α) into $\mathcal{L}(X)$.
- (ρ, s) is covariant homomorphism of $(\widehat{G}, \mathcal{A}, \iota)$ into $\mathcal{L}(X)$.
- $s_{\gamma} r_{x}=\gamma(x) r_{x} s_{\gamma}$ for all $x \in G$ and $\gamma \in \widehat{G}$.

When $\mathcal{A}=\mathbb{C}$, this is a classical Heisenberg representation.
Warning: X may not have orthogonally complemented \mathcal{A}-submodules.

The (G, \mathcal{A}, α)-Schrödinger Representation

Definition

Let $\mathrm{L}^{2}(G, \mathcal{A}, \alpha)$ be the completion of $C_{c}(G, \mathcal{A})$ as a right Hilbert \mathcal{A}-module with twisted action $[f \bullet a](x):=f(x) \alpha_{x}(a)$ for all $x \in G$ and

$$
\langle f \mid g\rangle:=\int_{G} \alpha_{x^{-1}}\left(f(x)^{*} g(x)\right) d \mu(x)
$$

For $\phi \in C_{c}(G, \mathcal{A})$, define

- $\mathrm{M}: \mathcal{A} \rightarrow \mathcal{L}\left(\mathrm{L}^{2}(G, \mathcal{A}, \alpha)\right)$ by $[\mathrm{M}(a) \phi](x):=a \phi(x)$ for all $x \in G$,
- $u: G \rightarrow \mathcal{U}\left(\mathrm{~L}^{2}(G, \mathcal{A}, \alpha)\right)$ by $\left[u_{x} \phi\right](y):=\alpha_{x}\left(\phi\left(x^{-1} y\right)\right)$ for all $y \in G$,
- $v: \widehat{G} \rightarrow \mathcal{U}\left(\mathrm{~L}^{2}(G, \mathcal{A}, \alpha)\right)$ by $\left[v_{\gamma} \phi\right](y):=\gamma(y) \phi(y)$ for all $y \in G$.

The (G, \mathcal{A}, α)-Schrödinger representation is $\left(\mathrm{L}^{2}(G, \mathcal{A}, \alpha), \mathrm{M}, u, v\right)$. When $\mathcal{A}=\mathbb{C}$, we recover the classical Schrödinger representation (U, V).

First Ingredient of Covariant Stone-von Neumann Theorem

Proposition (Huang-l., 2018)

$\left(\mathrm{L}^{2}(G, \mathcal{A}, \alpha), \mathrm{M}, u, v\right)$ is a (G, \mathcal{A}, α)-Heisenberg representation.

The first ingredient in proving Classical Stone-von Neumann Theorem is

$$
C_{o}(G) x_{l_{t}} G \stackrel{\cong}{\rightrightarrows} \mathcal{K}\left(L^{2}(G)\right) \rightsquigarrow C_{o}(G, \mathcal{A}) x_{\mid t \otimes \alpha} G \stackrel{\cong}{\leftrightarrows} \mathcal{K}\left(L^{2}(G, \mathcal{A}, \alpha)\right)
$$

Classical isomorphism is given by

$$
\xi \rtimes U: C_{o}(G) \rtimes_{\mathrm{It}} G \stackrel{\cong}{\rightrightarrows} \mathcal{K}\left(L^{2}(G)\right) .
$$

Replace

$$
\xi: C_{c}(G) \rightarrow B\left(L^{2}(G)\right) \text { with } \equiv: C_{c}(G, \mathcal{A}) \rightarrow \mathcal{L}\left(\mathrm{L}^{2}(G, \mathcal{A}, \alpha)\right)
$$

Proposition (Huang-l., 2018)

$$
\equiv \rtimes u: C_{o}(G, \mathcal{A}) \rtimes_{\mathrm{It} \otimes \alpha} G \stackrel{\cong}{\rightrightarrows} \mathcal{K}\left(\mathrm{~L}^{2}(G, \mathcal{A}, \alpha)\right)
$$

Main Ideas of Isomorphism

Proposition (Huang-l., 2018)

$$
\equiv \rtimes u: C_{o}(G, \mathcal{A}) x_{\mid \mathrm{t} \otimes \alpha} G \stackrel{\cong}{\leftrightarrows} \mathcal{K}\left(\mathrm{~L}^{2}(G, \mathcal{A}, \alpha)\right)
$$

- The Hilbert \mathcal{A}-module $\mathrm{L}^{2}(G, \mathcal{A}, \alpha)$ is a $C_{o}(G, \mathcal{A}) \rtimes_{\text {It } \otimes \alpha} G-A$ imprimitivity bimodule by Green's Imprimitivity Theorem.
- In general, if X is a $B-A$ imprimitivity bimodule, then $B \cong \mathcal{K}\left(X_{\mathcal{A}}\right)$.
- We verified this canonical isomorphism is implemented by $\Xi \rtimes u$.

Second Ingredient

Given (S, R) on \mathcal{H}, one can use $\mathcal{F}: C_{c}(\widehat{G}) \rightarrow C_{o}(G)$ to build

- $\pi_{S}: C_{o}(G) \rightarrow \mathcal{B}(\mathcal{H})$
- $\rightsquigarrow\left(\pi_{S}, R\right)$ is a covariant representation of $\left(G, C_{o}(G), \mathrm{lt}\right)$ on \mathcal{H}

Proposition

Given (X, $\rho, r, s)$, can construct a covariant representation $\left(\Pi_{\rho, s}, r\right)$ of $\left(C_{o}(G, \mathcal{A}), G\right.$, lt $\left.\otimes \alpha\right)$ on X .

Classically:

$$
\mathcal{K}\left(L^{2}(G)\right) \xrightarrow{(M \rtimes U)^{-1}} C_{o}(G) \rtimes_{\mathrm{It}} G \xrightarrow{\pi_{s} \rtimes R} \mathcal{B}(\mathcal{H})
$$

Covariant:

$$
\mathcal{K}\left(\mathrm{L}^{2}(G, \mathcal{A}, \alpha)\right) \xrightarrow{(\equiv \rtimes u)^{-1}} C_{o}(G, \mathcal{A}) \rtimes_{\mathrm{It} \otimes \alpha} G \xrightarrow{\Pi_{\rho, s \times r}} \mathcal{L}(\mathrm{X})
$$

An Observation of Second Ingredient

Classically:

$$
\mathcal{K}\left(L^{2}(G)\right) \xrightarrow{(M \rtimes U)^{-1}} C_{o}(G) \rtimes_{\mathrm{It}} G \xrightarrow{\pi_{s} \rtimes R} \mathcal{B}(\mathcal{H})
$$

This is a nondegenerate $*$-representation of $\mathcal{K}\left(L^{2}(G)\right) \Rightarrow$ unitarily equivalent to a direct sum of copies of the identity representation.

Covariant:

$$
\mathcal{K}\left(\mathrm{L}^{2}(G, \mathcal{A}, \alpha)\right) \xrightarrow{(\equiv \rtimes u)^{-1}} C_{o}(G, \mathcal{A}) \rtimes_{\mathrm{It} \otimes \alpha} G \xrightarrow{\square{ }_{\rho, s \times r}} \mathcal{L}(\mathrm{X})
$$

Theorem (Huang-l., 2018)

Let Y be a Hilbert $\mathcal{K}(\mathcal{H})$-module. Any (nondegenerate) *-representation $\mathcal{K}(\mathrm{Y}) \rightarrow \mathcal{L}(\mathrm{X})$ is unitarily equivalent to a direct sum of the identity representation.

Restricting \mathcal{A} to $\mathcal{K}(\mathcal{H})$

Theorem (Huang-l., 2018)

Let Y be a Hilbert $\mathcal{K}(\mathcal{H})$-module. Any (nondegenerate) *-representation $\mathcal{K}(\mathrm{Y}) \rightarrow \mathcal{L}(\mathrm{X})$ is unitarily equivalent to a direct sum of the identity representation.

Corollary

$\mathcal{K}\left(\mathrm{L}^{2}(G, \mathcal{K}(\mathcal{H}), \alpha)\right) \xrightarrow{(\equiv \rtimes u)^{-1}} C_{o}(G, \mathcal{K}(\mathcal{H})) \rtimes_{\mid \mathrm{t} \otimes \alpha} G \xrightarrow{\Pi_{\rho, s \times r}} \mathcal{L}(\mathrm{X})$ is unitarily equivalent to a direct sum of the identity representation.

Main Theorem

Theorem (Huang-l., 2018)

Every $(G, \mathcal{K}(\mathcal{H}), \alpha)$-Heisenberg representation is unitarily equivalent to a direct sum of copies of the $(G, \mathcal{K}(\mathcal{H}), \alpha)$-Schrödinger representation.

The final observations to make:

- $\mathcal{K}\left(\mathrm{L}^{2}(G, \mathcal{K}(\mathcal{H}), \alpha)\right) \xrightarrow{(\equiv \rtimes u)^{-1}} C_{o}(G, \mathcal{K}(\mathcal{H})) \rtimes_{\mathrm{lt} \otimes \alpha} G \xrightarrow{\Pi_{\rho, s \rtimes r}} \mathcal{L}(\mathrm{X}) \sim$ direct sum of copies of the identity representation
- $\equiv=\Pi_{\mathrm{M}, v}$, so $\equiv \rtimes u=\Pi_{\mathrm{M}, v} \rtimes u$
- Therefore, $\Pi_{\rho, s} \rtimes r$ is unitarily equivalent to a direct sum of copies of $\Pi_{M, v} \rtimes u$
- Untwist to get $\rho \sim \oplus \mathrm{M}, \mathrm{s} \sim \oplus v$, and $r \sim \oplus u$.

Thank you!

