The Covariant Stone-von Neumann Theorem

Lara Ismert, with Leonard Huang (University of Nevada, Reno)

Embry-Riddle Aeronautical University, Prescott, AZ

January 17, 2020

January 17, 2020 1 / 16

Goal: Classify pairs (A, B) of (possibly unbounded) self-adjoint operators on a Hilbert space \mathcal{H} that satisfy:

- A and B share a common dense domain $K \subseteq \mathcal{H}$ and
- [A, B]h = ih for all $h \in K$. (Heisenberg Commutation Relation)

Example (Schrödinger Pair)

 $Q = M_x$ and $P = -i \frac{d}{dx}$ on $L^2(\mathbb{R})$ is such a pair...is this "all" of them?

No.

Goal: Classify pairs (A, B) of (possibly unbounded) self-adjoint operators on a Hilbert space \mathcal{H} that satisfy:

- A and B share a common dense domain $K \subseteq \mathcal{H}$ and
- [A, B]h = ih for all $h \in K$. (Heisenberg Commutation Relation)

Strategies:

- Make more restrictive requirements on dense subspace K.
- Classify unitary groups generated by A and B which satisfy the

Weyl Commutation Relation.

The Weyl Commutation Relation

Definition

Let G be a l.c.a. group. A pair
$$(R, S)$$
 of unitary representations
 $R: G \to U(\mathcal{H})$ and $S: \widehat{G} \to U(\mathcal{H})$
satisfy the Weyl Commutation Relation if
 $S_{\gamma}R_x = \gamma(x)R_xS_{\gamma} \quad \forall x \in G, \gamma \in \widehat{G}.$

Example (Schrödinger Representation)

The representations $U: G \to \mathcal{U}(L^2(G))$ and $V: \widehat{G} \to \mathcal{U}(L^2(G))$ given by

$$(V_{\gamma}f)(y) = \gamma(y)f(y)$$
 and $(U_{x}f)(y) = f(x^{-1}y); \quad \forall y \in G$

satisfy the Weyl Commutation Relation.

Question: Is this "all" pairs which satisfy the WCR? Yes.

Classical Stone-von Neumann Theorem

Theorem (Stone-von Neumann / von Neumann Uniqueness)

Any pair of unitary representations (S, R) of G satisfying the WCR must be $(S, R) \sim \oplus(V, U)$.

Corollary. If A and B generate unitary groups S and R which satisfy the WCR, then

$$(A,B)\sim \oplus (Q,P).$$

Onfortunately,

(A, B) is a Heisenberg pair $\Rightarrow (S, R)$ is a Heisenberg representation.

3 Moral: Must determine when (A, B) generate unitary groups which satisfy the WCR...which depends on the common domain $K \subset \mathcal{H}$.

Theorem (Stone-von Neumann / von Neumann Uniqueness)

Any pair of unitary representations (S, R) of G on \mathcal{H} satisfying the WCR must be $(S, R) \sim \oplus (V, U)$.

Initial Goal: Extend Stone-von Neumann Theorem to unitary group representations on Hilbert *C**-modules, denoted X.

- Define appropriate extensions of
 - "satisfying the WCR" on X, called a Heisenberg representation, and
 - the Schrödinger representation (U, V) on $L^2(G)$
- But wait!
 - Now there's a C^* -algebra \mathcal{A} with right action on X,
 - and we also have a l.c.a. group G...

Larger Goal: Extend Stone-von Neumann Theorem to representations of C^* -dynamical systems on Hilbert C^* -modules.

Theorem (Huang-I., 2018)

Every $(G, \mathcal{K}(\mathcal{H}), \alpha)$ -Heisenberg representation is unitarily equivalent to a direct sum of copies of the $(G, \mathcal{K}(\mathcal{H}), \alpha)$ -Schrödinger representation.

(G, \mathcal{A}, α) -Heisenberg Representations

Definition

A (G, \mathcal{A}, α) -Heisenberg module representation is a quadruple (X, ρ, r, s) with the following properties:

- X is a (full) Hilbert *A*-module.
- $\rho: \mathcal{A} \to \mathcal{L}(X)$ is a (nondegenerate) *-representation.
- $r: G \to \mathcal{U}(X)$ and $s: \widehat{G} \to \mathcal{U}(X)$ are unitary group representations.
- (ρ, r) is a covariant homomorphism of (G, A, α) into $\mathcal{L}(X)$.
- (ρ, s) is covariant homomorphism of $(\widehat{G}, \mathcal{A}, \iota)$ into $\mathcal{L}(X)$.
- $s_{\gamma}r_x = \gamma(x)r_xs_{\gamma}$ for all $x \in G$ and $\gamma \in \widehat{G}$.

When $\mathcal{A} = \mathbb{C}$, this is a classical Heisenberg representation. Warning: X may not have orthogonally complemented \mathcal{A} -submodules.

The (G, A, α) -Schrödinger Representation

Definition

Let $L^2(G, \mathcal{A}, \alpha)$ be the completion of $C_c(G, \mathcal{A})$ as a right Hilbert \mathcal{A} -module with twisted action $[f \bullet a](x) := f(x)\alpha_x(a)$ for all $x \in G$ and

$$\langle f | g \rangle := \int_{\mathcal{G}} \alpha_{x^{-1}}(f(x)^*g(x)) \ d\mu(x).$$

For $\phi \in C_c(G, \mathcal{A})$, define

- $M : \mathcal{A} \to \mathcal{L}(L^2(G, \mathcal{A}, \alpha))$ by $[M(a)\phi](x) := a\phi(x)$ for all $x \in G$,
- $u: G \to \mathcal{U}(L^2(G, \mathcal{A}, \alpha))$ by $[u_x \phi](y) := \alpha_x(\phi(x^{-1}y))$ for all $y \in G$,
- $v: \widehat{G} \to \mathcal{U}(\mathsf{L}^2(G, \mathcal{A}, \alpha))$ by $[v_\gamma \phi](y) := \gamma(y)\phi(y)$ for all $y \in G$.

The (G, \mathcal{A}, α) -Schrödinger representation is $(L^2(G, \mathcal{A}, \alpha), M, u, v)$. When $\mathcal{A} = \mathbb{C}$, we recover the classical Schrödinger representation (U, V).

< □ > < □ > < □ > < □ > < □ > < □ >

First Ingredient of Covariant Stone-von Neumann Theorem

Proposition (Huang-I., 2018)

 $(L^{2}(G, \mathcal{A}, \alpha), M, u, v)$ is a (G, \mathcal{A}, α) -Heisenberg representation.

The first ingredient in proving Classical Stone-von Neumann Theorem is

$$C_o(G)\rtimes_{\mathsf{lt}}G\overset{\cong}{\to}\mathcal{K}\bigl(L^2(G)\bigr)\rightsquigarrow C_o(G,\mathcal{A})\rtimes_{\mathsf{lt}\otimes\alpha}G\overset{\cong}{\to}\mathcal{K}\bigl(\mathsf{L}^2(G,\mathcal{A},\alpha)\bigr)$$

Classical isomorphism is given by

$$\xi \rtimes U : C_o(G) \rtimes_{\mathsf{lt}} G \xrightarrow{\cong} \mathcal{K}(L^2(G)).$$

Replace

$$\xi: C_c(G) \to B(L^2(G)) \text{ with } \Xi: C_c(G, \mathcal{A}) \to \mathcal{L}(L^2(G, \mathcal{A}, \alpha)).$$

Proposition (Huang-I., 2018)

$$\Xi \rtimes u: C_o(G, \mathcal{A}) \rtimes_{\mathsf{lt} \otimes \alpha} G \xrightarrow{\cong} \mathcal{K}(\mathsf{L}^2(G, \mathcal{A}, \alpha))$$

Proposition (Huang-I., 2018)

$$\Xi \rtimes u: C_o(G, \mathcal{A}) \rtimes_{\mathsf{lt} \otimes \alpha} G \xrightarrow{\cong} \mathcal{K} \big(\mathsf{L}^2(G, \mathcal{A}, \alpha) \big)$$

- The Hilbert A-module L²(G, A, α) is a C_o(G, A) ⋊_{It⊗α} G − A imprimitivity bimodule by Green's Imprimitivity Theorem.
- In general, if X is a B A imprimitivity bimodule, then $B \cong \mathcal{K}(X_{\mathcal{A}})$.
- We verified this canonical isomorphism is implemented by $\Xi \rtimes u$.

Second Ingredient

Given (S, R) on \mathcal{H} , one can use $\mathcal{F} : C_c(\widehat{G}) \to C_o(G)$ to build

•
$$\pi_S : C_o(G) \to \mathcal{B}(\mathcal{H})$$

• \rightsquigarrow $(\pi_{\mathcal{S}}, R)$ is a covariant representation of $(\mathcal{G}, \mathcal{C}_o(\mathcal{G}), \mathsf{lt})$ on \mathcal{H}

Proposition

Given (X, ρ, r, s) , can construct a covariant representation $(\Pi_{\rho,s}, r)$ of $(C_o(G, A), G, lt \otimes \alpha)$ on X.

Classically:

$$\mathcal{K}(L^{2}(G)) \stackrel{(M \rtimes U)^{-1}}{\longrightarrow} C_{o}(G) \rtimes_{\mathsf{lt}} G \stackrel{\pi_{S} \rtimes R}{\longrightarrow} \mathcal{B}(\mathcal{H})$$

Covariant:

$$\mathcal{K}(\mathsf{L}^{2}(G,\mathcal{A},\alpha)) \stackrel{(\Xi \rtimes u)^{-1}}{\longrightarrow} C_{o}(G,\mathcal{A}) \rtimes_{\mathsf{lt} \otimes \alpha} G \stackrel{\Pi_{\rho,s} \rtimes r}{\longrightarrow} \mathcal{L}(\mathsf{X})$$

An Observation of Second Ingredient

Classically:

$$\mathcal{K}(L^{2}(G)) \stackrel{(M \rtimes U)^{-1}}{\longrightarrow} C_{o}(G) \rtimes_{\mathsf{lt}} G \stackrel{\pi_{\mathcal{S}} \rtimes R}{\longrightarrow} \mathcal{B}(\mathcal{H})$$

This is a nondegenerate *-representation of $\mathcal{K}(L^2(G)) \Rightarrow$ unitarily equivalent to a direct sum of copies of the identity representation.

Covariant:

$$\mathcal{K}(\mathsf{L}^{2}(\mathcal{G},\mathcal{A},\alpha)) \stackrel{(\Xi \rtimes u)^{-1}}{\longrightarrow} \mathcal{C}_{o}(\mathcal{G},\mathcal{A}) \rtimes_{\mathsf{It} \otimes \alpha} \mathcal{G} \stackrel{\Pi_{\rho,s} \rtimes r}{\longrightarrow} \mathcal{L}(\mathsf{X})$$

Theorem (Huang-I., 2018)

Let Y be a Hilbert $\mathcal{K}(\mathcal{H})$ -module. Any (nondegenerate) *-representation $\mathcal{K}(Y) \to \mathcal{L}(X)$ is unitarily equivalent to a direct sum of the identity representation.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Huang-I., 2018)

Let Y be a Hilbert $\mathcal{K}(\mathcal{H})$ -module. Any (nondegenerate) *-representation $\mathcal{K}(Y) \rightarrow \mathcal{L}(X)$ is unitarily equivalent to a direct sum of the identity representation.

Corollary

 $\mathcal{K}(\mathsf{L}^{2}(G,\mathcal{K}(\mathcal{H}),\alpha)) \xrightarrow{(\Xi \rtimes u)^{-1}} C_{o}(G,\mathcal{K}(\mathcal{H})) \rtimes_{\mathsf{lt}\otimes\alpha} G \xrightarrow{\Pi_{\rho,s}\rtimes r} \mathcal{L}(\mathsf{X})$ is unitarily equivalent to a direct sum of the identity representation.

Theorem (Huang-I., 2018)

Every $(G, \mathcal{K}(\mathcal{H}), \alpha)$ -Heisenberg representation is unitarily equivalent to a direct sum of copies of the $(G, \mathcal{K}(\mathcal{H}), \alpha)$ -Schrödinger representation.

The final observations to make:

• $\mathcal{K}(L^2(G, \mathcal{K}(\mathcal{H}), \alpha)) \xrightarrow{(\Xi \rtimes u)^{-1}} C_o(G, \mathcal{K}(\mathcal{H})) \rtimes_{\mathsf{It} \otimes \alpha} G \xrightarrow{\Pi_{\rho, \varsigma} \rtimes r} \mathcal{L}(\mathsf{X}) \sim$ direct sum of copies of the identity representation

•
$$\Xi = \Pi_{\mathsf{M}, v}$$
, so $\Xi \rtimes u = \Pi_{\mathsf{M}, v} \rtimes u$

- Therefore, $\Pi_{\rho,s}\rtimes r$ is unitarily equivalent to a direct sum of copies of $\Pi_{{\rm M},\nu}\rtimes u$
- Untwist to get $\rho \sim \oplus M$, $s \sim \oplus v$, and $r \sim \oplus u$.

Thank you!

Image: A matrix

æ