Analytic Vectors of a Weakly-Defined Derivation

Lara Ismert

Embry-Riddle Aeronautical University - Prescott, AZ

Joint Math Meetings, Denver, CO

AMS Special Session on
C*-algebras, Dynamical Systems, and Applications

$$
\text { June 8, } 2020
$$

Definition of an Analytic Vector

Definition

Let S be a linear operator on a Banach space X. A vector $x \in X$ is analytic for S if

Definition of an Analytic Vector

Definition

Let S be a linear operator on a Banach space X. A vector $x \in X$ is analytic for S if

- $x \in \operatorname{Dom}\left(S^{n}\right)$ for all $n \in \mathbb{N}$ and

Definition of an Analytic Vector

Definition

Let S be a linear operator on a Banach space X. A vector $x \in X$ is analytic for S if

- $x \in \operatorname{Dom}\left(S^{n}\right)$ for all $n \in \mathbb{N}$ and
- $\exists t>0$ such that $\sum_{n=1}^{\infty} \frac{\left\|S^{n} x\right\|}{n!} t^{n}<\infty$.

Definition of an Analytic Vector

Definition

Let S be a linear operator on a Banach space X. A vector $x \in X$ is analytic for S if

- $x \in \operatorname{Dom}\left(S^{n}\right)$ for all $n \in \mathbb{N}$ and
- $\exists t>0$ such that $\sum_{n=1}^{\infty} \frac{\left\|S^{n} x\right\|}{n!} t^{n}<\infty$.

Denote the set of analytic vectors for S in X by \mathcal{A}_{S}.

Definition of an Analytic Vector

Definition

Let S be a linear operator on a Banach space X. A vector $x \in X$ is analytic for S if

- $x \in \operatorname{Dom}\left(S^{n}\right)$ for all $n \in \mathbb{N}$ and
- $\exists t>0$ such that $\sum_{n=1}^{\infty} \frac{\left\|S^{n} x\right\|}{n!} t^{n}<\infty$.

Denote the set of analytic vectors for S in X by \mathcal{A}_{S}.

Example (Nelson's Analytic Vector Theorem)

If D is a symmetric operator on a Hilbert space \mathcal{H},

Definition of an Analytic Vector

Definition

Let S be a linear operator on a Banach space X. A vector $x \in X$ is analytic for S if

- $x \in \operatorname{Dom}\left(S^{n}\right)$ for all $n \in \mathbb{N}$ and
- $\exists t>0$ such that $\sum_{n=1}^{\infty} \frac{\left\|S^{n} x\right\|}{n!} t^{n}<\infty$.

Denote the set of analytic vectors for S in X by \mathcal{A}_{S}.

Example (Nelson's Analytic Vector Theorem)

If D is a symmetric operator on a Hilbert space \mathcal{H},
\mathcal{A}_{D} is dense in $\mathcal{H} \Longleftrightarrow D$ is (essentially) self-adjoint.

Definition of an Analytic Vector

Definition

Let S be a linear operator on a Banach space X. A vector $x \in X$ is analytic for S if

- $x \in \operatorname{Dom}\left(S^{n}\right)$ for all $n \in \mathbb{N}$ and
- $\exists t>0$ such that $\sum_{n=1}^{\infty} \frac{\left\|S^{n} x\right\|}{n!} t^{n}<\infty$.

Denote the set of analytic vectors for S in X by \mathcal{A}_{S}.

Example (Nelson's Analytic Vector Theorem)

If D is a symmetric operator on a Hilbert space \mathcal{H},
\mathcal{A}_{D} is dense in $\mathcal{H} \Longleftrightarrow D$ is (essentially) self-adjoint.

Ample analytic vectors corresponds, in some sense, to stronger continuity.

Outline

Goal: Use the continuity of a weakly-defined derivation δ_{D} on $\mathcal{B}(\mathcal{H})$ to examine its analytic vectors \mathcal{A}_{δ}.

Outline

Goal: Use the continuity of a weakly-defined derivation δ_{D} on $\mathcal{B}(\mathcal{H})$ to examine its analytic vectors \mathcal{A}_{δ}. In particular, we will prove

Theorem (1., 2019)

The analytic vectors for δ_{D} are SOT-dense in $\mathcal{B}(\mathcal{H})$.

Outline

Goal: Use the continuity of a weakly-defined derivation δ_{D} on $\mathcal{B}(\mathcal{H})$ to examine its analytic vectors \mathcal{A}_{δ}. In particular, we will prove

Theorem (I., 2019)

The analytic vectors for δ_{D} are SOT-dense in $\mathcal{B}(\mathcal{H})$.
(1) Define a second notion of analyticity with respect to a flow on a Banach space.

Outline

Goal: Use the continuity of a weakly-defined derivation δ_{D} on $\mathcal{B}(\mathcal{H})$ to examine its analytic vectors \mathcal{A}_{δ}. In particular, we will prove

Theorem (I., 2019)

The analytic vectors for δ_{D} are SOT-dense in $\mathcal{B}(\mathcal{H})$.
(1) Define a second notion of analyticity with respect to a flow on a Banach space.
(2) Relate this notion and the original definition.

Outline

Goal: Use the continuity of a weakly-defined derivation δ_{D} on $\mathcal{B}(\mathcal{H})$ to examine its analytic vectors \mathcal{A}_{δ}. In particular, we will prove

Theorem (I., 2019)

The analytic vectors for δ_{D} are SOT-dense in $\mathcal{B}(\mathcal{H})$.
(1) Define a second notion of analyticity with respect to a flow on a Banach space.
(2) Relate this notion and the original definition.
(3) Give a constructive proof of analytic vector density in the SOT.

Analytic Vectors for a Flow

Fix a closed subspace $F \subseteq X^{*}$. Let $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ be a $\sigma(X, F)$-continuous group of isometries on X.

Analytic Vectors for a Flow

Fix a closed subspace $F \subseteq X^{*}$. Let $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ be a $\sigma(X, F)$-continuous group of isometries on X.

Definition

A vector $x \in X$ is analytic for $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ if

Analytic Vectors for a Flow

Fix a closed subspace $F \subseteq X^{*}$. Let $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ be a $\sigma(X, F)$-continuous group of isometries on X.

Definition

A vector $x \in X$ is analytic for $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ if there exists a map $x: I_{\lambda} \rightarrow X$ s.t.

Analytic Vectors for a Flow

Fix a closed subspace $F \subseteq X^{*}$. Let $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ be a $\sigma(X, F)$-continuous group of isometries on X.

Definition

A vector $x \in X$ is analytic for $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ if there exists a map $x: I_{\lambda} \rightarrow X$ s.t.

- $x(t)=\sigma_{t}(x)$ for all $t \in \mathbb{R}$

Analytic Vectors for a Flow

Fix a closed subspace $F \subseteq X^{*}$. Let $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ be a $\sigma(X, F)$-continuous group of isometries on X.

Definition

A vector $x \in X$ is analytic for $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ if there exists a map $x: I_{\lambda} \rightarrow X$ s.t.

- $x(t)=\sigma_{t}(x)$ for all $t \in \mathbb{R}($ so $x(0)=x)$

Analytic Vectors for a Flow

Fix a closed subspace $F \subseteq X^{*}$. Let $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ be a $\sigma(X, F)$-continuous group of isometries on X.

Definition

A vector $x \in X$ is analytic for $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ if there exists a map $x: I_{\lambda} \rightarrow X$ s.t.

- $x(t)=\sigma_{t}(x)$ for all $t \in \mathbb{R}($ so $x(0)=x)$ and

Analytic Vectors for a Flow

Fix a closed subspace $F \subseteq X^{*}$. Let $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ be a $\sigma(X, F)$-continuous group of isometries on X.

Definition

A vector $x \in X$ is analytic for $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ if there exists a map $x: I_{\lambda} \rightarrow X$ s.t.

- $x(t)=\sigma_{t}(x)$ for all $t \in \mathbb{R}($ so $x(0)=x)$ and
- $z \mapsto \varphi(x(z))$ is analytic on I_{λ} for all $\varphi \in F$.

Analytic Vectors for a Flow

Fix a closed subspace $F \subseteq X^{*}$. Let $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ be a $\sigma(X, F)$-continuous group of isometries on X.

Definition

A vector $x \in X$ is analytic for $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ if there exists a map $x: I_{\lambda} \rightarrow X$ s.t.

- $x(t)=\sigma_{t}(x)$ for all $t \in \mathbb{R}($ so $x(0)=x)$ and
- $z \mapsto \varphi(x(z))$ is analytic on I_{λ} for all $\varphi \in F$.

Analytic Vectors for a Flow

Fix a closed subspace $F \subseteq X^{*}$. Let $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ be a $\sigma(X, F)$-continuous group of isometries on X.

Definition

A vector $x \in X$ is analytic for $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ if there exists a map $x: I_{\lambda} \rightarrow X$ s.t.

- $x(t)=\sigma_{t}(x)$ for all $t \in \mathbb{R}($ so $x(0)=x)$ and
- $z \mapsto \varphi(x(z))$ is analytic on I_{λ} for all $\varphi \in F$.

Example of an Analytic Vector for a Flow

Definition

A vector $x \in X$ is analytic for $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ if there exists a map $x: I_{\lambda} \rightarrow X$ s.t.

- $x(t)=\sigma_{t}(x)$ for all $t \in \mathbb{R}($ so $x(0)=x)$ and
- $z \mapsto \varphi(x(z))$ is analytic on I_{λ} for all $\varphi \in F$.

Example of an Analytic Vector for a Flow

Definition

A vector $x \in X$ is analytic for $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ if there exists a map $x: I_{\lambda} \rightarrow X$ s.t.

- $x(t)=\sigma_{t}(x)$ for all $t \in \mathbb{R}($ so $x(0)=x)$ and
- $z \mapsto \varphi(x(z))$ is analytic on I_{λ} for all $\varphi \in F$.

Example

Let $\left\{U_{t}\right\}_{t \in \mathbb{R}}$ be a strongly-continuous group of unitaries on \mathcal{H}. Given $h \in \mathcal{H}$, define $h(t):=U_{t} h$. Then h is analytic for $\left\{U_{t}\right\}_{t \in \mathbb{R}}$ if $\forall k \in \mathcal{H}$, $t \mapsto\langle h(t), k\rangle$ extends to an analytic function on a complex region I_{λ}.

The Robustness of (Unbounded) Self-Adjoint Operators

If D is a (possibly unbounded) self-adjoint operator on \mathcal{H}, then

The Robustness of (Unbounded) Self-Adjoint Operators

If D is a (possibly unbounded) self-adjoint operator on \mathcal{H}, then

- $\left\{e^{i t D}\right\}_{t \in \mathbb{R}}$ is a strongly continuous group of unitaries. [Stone, 1932]

The Robustness of (Unbounded) Self-Adjoint Operators

If D is a (possibly unbounded) self-adjoint operator on \mathcal{H}, then

- $\left\{e^{i t D}\right\}_{t \in \mathbb{R}}$ is a strongly continuous group of unitaries. [Stone, 1932]
- D has a dense set of analytic vectors in \mathcal{H}. [Nelson, 1959]

The Robustness of (Unbounded) Self-Adjoint Operators

If D is a (possibly unbounded) self-adjoint operator on \mathcal{H}, then

- $\left\{e^{i t D}\right\}_{t \in \mathbb{R}}$ is a strongly continuous group of unitaries. [Stone, 1932]
- D has a dense set of analytic vectors in \mathcal{H}. [Nelson, 1959]

Proposition

If $h \in \mathcal{H}$, then

$$
h \in \mathcal{A}_{D} \Longleftrightarrow h \text { is analytic for }\left\{e^{i t D}\right\}_{t \in \mathbb{R}}
$$

The Robustness of (Unbounded) Self-Adjoint Operators

If D is a (possibly unbounded) self-adjoint operator on \mathcal{H}, then

- $\left\{e^{i t D}\right\}_{t \in \mathbb{R}}$ is a strongly continuous group of unitaries. [Stone, 1932]
- D has a dense set of analytic vectors in \mathcal{H}. [Nelson, 1959]

Proposition

If $h \in \mathcal{H}$, then

$$
h \in \mathcal{A}_{D} \Longleftrightarrow h \text { is analytic for }\left\{e^{i t D}\right\}_{t \in \mathbb{R}}
$$

In fact, if S is the infinitesimal generator of a $\sigma(X, F)$-continuous group of isometries $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ on X, then

$$
x \in \mathcal{A}_{S} \Longleftrightarrow x \text { is analytic for }\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}
$$

Exploiting this relation for δ_{D}

For each $t \in \mathbb{R}$, define $\alpha_{t}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ by

$$
\alpha_{t}(x)=e^{i t D} x e^{-i t D} \quad \forall x \in \mathcal{B}(\mathcal{H}) .
$$

Exploiting this relation for δ_{D}

For each $t \in \mathbb{R}$, define $\alpha_{t}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ by

$$
\alpha_{t}(x)=e^{i t D} x e^{-i t D} \quad \forall x \in \mathcal{B}(\mathcal{H})
$$

- $\left\{\alpha_{t}\right\}_{t \in \mathbb{R}}$ is (among other topologies) WOT-continuous.

Exploiting this relation for δ_{D}

For each $t \in \mathbb{R}$, define $\alpha_{t}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ by

$$
\alpha_{t}(x)=e^{i t D} x e^{-i t D} \quad \forall x \in \mathcal{B}(\mathcal{H})
$$

- $\left\{\alpha_{t}\right\}_{t \in \mathbb{R}}$ is (among other topologies) WOT-continuous.
- the infinitesimal generator δ is a symmetric map on a subset of $\mathcal{B}(\mathcal{H})$.

Exploiting this relation for δ_{D}

For each $t \in \mathbb{R}$, define $\alpha_{t}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ by

$$
\alpha_{t}(x)=e^{i t D} x e^{-i t D} \quad \forall x \in \mathcal{B}(\mathcal{H})
$$

- $\left\{\alpha_{t}\right\}_{t \in \mathbb{R}}$ is (among other topologies) WOT-continuous.
- the infinitesimal generator δ is a symmetric map on a subset of $\mathcal{B}(\mathcal{H})$.

Definition

An operator $x \in \mathcal{B}(\mathcal{H})$ is weakly D-differentiable if $\exists y \in \mathcal{B}(\mathcal{H})$ s.t.

$$
\lim _{t \rightarrow 0}\left|\left\langle\left(\frac{\alpha_{t}(x)-x}{t}-y\right) h, k\right\rangle\right|=0 \text { for all } h, k \in \mathcal{H}
$$

Exploiting this relation for δ_{D}

For each $t \in \mathbb{R}$, define $\alpha_{t}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ by

$$
\alpha_{t}(x)=e^{i t D} x e^{-i t D} \quad \forall x \in \mathcal{B}(\mathcal{H})
$$

- $\left\{\alpha_{t}\right\}_{t \in \mathbb{R}}$ is (among other topologies) WOT-continuous.
- the infinitesimal generator δ is a symmetric map on a subset of $\mathcal{B}(\mathcal{H})$.

Definition

An operator $x \in \mathcal{B}(\mathcal{H})$ is weakly D-differentiable if $\exists y \in \mathcal{B}(\mathcal{H})$ s.t.

$$
\lim _{t \rightarrow 0}\left|\left\langle\left(\frac{\alpha_{t}(x)-x}{t}-y\right) h, k\right\rangle\right|=0 \text { for all } h, k \in \mathcal{H}
$$

Notation: $x \in \operatorname{Dom}(\delta)$ and $\delta(x)=-i y$, so $\delta: \operatorname{Dom}(\delta) \rightarrow \mathcal{B}(\mathcal{H})$.

Properties of δ

Properties of δ

Theorem (E. Christensen, 2016)
The following are equivalent:

Properties of δ

Theorem (E. Christensen, 2016)

The following are equivalent:

- $x \in \operatorname{Dom}(\delta)$.

Properties of δ

Theorem (E. Christensen, 2016)

The following are equivalent:

- $x \in \operatorname{Dom}(\delta)$.
- $[i D, x]$ is defined and bounded on a core \mathcal{C}.

Properties of δ

Theorem (E. Christensen, 2016)

The following are equivalent:

- $x \in \operatorname{Dom}(\delta)$.
- $[i D, x]$ is defined and bounded on a core \mathcal{C}.

If either of the above conditions hold, $\delta(x) \mid \mathrm{e}=[i D, x]$.

Properties of δ

Theorem (E. Christensen, 2016)

The following are equivalent:

- $x \in \operatorname{Dom}(\delta)$.
- $[i D, x]$ is defined and bounded on a core \mathcal{C}.

If either of the above conditions hold, $\delta(x) \mid \mathrm{e}=[i D, x]$.
Note: $\mathcal{A}_{\delta} \subset \operatorname{Dom}(\delta)$.

Properties of δ

Theorem (E. Christensen, 2016)

The following are equivalent:

- $x \in \operatorname{Dom}(\delta)$.
- $[i D, x]$ is defined and bounded on a core \mathcal{C}.

If either of the above conditions hold, $\delta(x) \mid \mathrm{e}=[i D, x]$.
Note: $\mathcal{A}_{\delta} \subset \operatorname{Dom}(\delta)$. How "big" is $\operatorname{Dom}(\delta)$?

Properties of δ

Theorem (E. Christensen, 2016)

The following are equivalent:

- $x \in \operatorname{Dom}(\delta)$.
- $[i D, x]$ is defined and bounded on a core \mathcal{C}.

If either of the above conditions hold, $\delta(x) \mid \mathrm{e}=[i D, x]$.
Note: $\mathcal{A}_{\delta} \subset \operatorname{Dom}(\delta)$. How "big" is $\operatorname{Dom}(\delta)$?
Theorem (E. Christensen, 2015)
$\operatorname{Dom}(\delta)$ is a SOT-dense $*$-subalgebra of $\mathcal{B}(\mathcal{H})$.

Properties of δ

Theorem (E. Christensen, 2016)

The following are equivalent:

- $x \in \operatorname{Dom}(\delta)$.
- $[i D, x]$ is defined and bounded on a core \mathcal{C}.

If either of the above conditions hold, $\delta(x) \mid e=[i D, x]$.
Note: $\mathcal{A}_{\delta} \subset \operatorname{Dom}(\delta)$. How "big" is $\operatorname{Dom}(\delta)$?

Theorem (E. Christensen, 2015)

Dom (δ) is a SOT-dense $*$-subalgebra of $\mathcal{B}(\mathcal{H})$.
Furthermore, $\mathcal{A}_{\delta} \subset \operatorname{Dom}\left(\delta^{n}\right)$ for all $n \in \mathbb{N}$.

Properties of δ

Theorem (E. Christensen, 2016)

The following are equivalent:

- $x \in \operatorname{Dom}(\delta)$.
- $[i D, x]$ is defined and bounded on a core \mathcal{C}.

If either of the above conditions hold, $\delta(x) \mid \mathrm{e}=[i D, x]$.
Note: $\mathcal{A}_{\delta} \subset \operatorname{Dom}(\delta)$. How "big" is $\operatorname{Dom}(\delta)$?

Theorem (E. Christensen, 2015)

Dom (δ) is a SOT-dense $*$-subalgebra of $\mathcal{B}(\mathcal{H})$.
Furthermore, $\mathcal{A}_{\delta} \subset \operatorname{Dom}\left(\delta^{n}\right)$ for all $n \in \mathbb{N}$. So, how "big" is $\operatorname{Dom}\left(\delta^{n}\right)$?

Properties of δ

Theorem (E. Christensen, 2016)

The following are equivalent:

- $x \in \operatorname{Dom}(\delta)$.
- $[i D, x]$ is defined and bounded on a core \mathcal{C}.

If either of the above conditions hold, $\delta(x) \mid \mathrm{e}=[i D, x]$.
Note: $\mathcal{A}_{\delta} \subset \operatorname{Dom}(\delta)$. How "big" is $\operatorname{Dom}(\delta)$?

Theorem (E. Christensen, 2015)

$\operatorname{Dom}(\delta)$ is a SOT-dense $*$-subalgebra of $\mathcal{B}(\mathcal{H})$.
Furthermore, $\mathcal{A}_{\delta} \subset \operatorname{Dom}\left(\delta^{n}\right)$ for all $n \in \mathbb{N}$. So, how "big" is $\operatorname{Dom}\left(\delta^{n}\right)$?

Theorem (I., 2018)

For each $n \in \mathbb{N}$, $\operatorname{Dom}\left(\delta^{n}\right)$ is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Proof Sketch

Theorem (1., 2018)

For each $n \in \mathbb{N}$, $\operatorname{Dom}\left(\delta^{n}\right)$ is SOT-dense in $\mathcal{B}(\mathcal{H})$.
Proof.

Proof Sketch

Theorem (1., 2018)

For each $n \in \mathbb{N}$, $\operatorname{Dom}\left(\delta^{n}\right)$ is SOT-dense in $\mathcal{B}(\mathcal{H})$.
Proof.
(1) Easy Lemma: If $S \subseteq \mathcal{H}$ is dense, then

$$
\mathcal{F}(S)=\operatorname{Span}\left\{h \otimes k^{*}: h, k \in S\right\}=\text { "Finite-Rank Operators from } S "
$$ is $\|\cdot\|$-dense in $\mathbb{K}(\mathcal{H}) \mathcal{H}$.

Proof Sketch

Theorem (I., 2018)

For each $n \in \mathbb{N}$, $\operatorname{Dom}\left(\delta^{n}\right)$ is SOT-dense in $\mathcal{B}(\mathcal{H})$.
Proof.
(1) Easy Lemma: If $S \subseteq \mathcal{H}$ is dense, then

$$
\mathcal{F}(S)=\operatorname{Span}\left\{h \otimes k^{*}: h, k \in S\right\}=\text { "Finite-Rank Operators from } S "
$$

is $\|\cdot\|$-dense in $\mathbb{K}(\mathcal{H}) \mathcal{H}$.
(2) $\mathcal{K}(\mathcal{H})$ is SOT-dense in $\mathcal{B}(\mathcal{H})$

Proof Sketch

Theorem (1., 2018)

For each $n \in \mathbb{N}$, $\operatorname{Dom}\left(\delta^{n}\right)$ is SOT-dense in $\mathcal{B}(\mathcal{H})$.
Proof.
(1) Easy Lemma: If $S \subseteq \mathcal{H}$ is dense, then

$$
\mathcal{F}(S)=\operatorname{Span}\left\{h \otimes k^{*}: h, k \in S\right\}=\text { "Finite-Rank Operators from } S "
$$

is $\|\cdot\|$-dense in $\mathbb{K}(\mathcal{H}) \mathcal{H}$.
(2) $\mathcal{K}(\mathcal{H})$ is SOT-dense in $\mathcal{B}(\mathcal{H}) \Rightarrow \mathcal{F}(S)$ is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Proof Sketch

Theorem (I., 2018)

For each $n \in \mathbb{N}$, $\operatorname{Dom}\left(\delta^{n}\right)$ is SOT-dense in $\mathcal{B}(\mathcal{H})$.
Proof.
(1) Easy Lemma: If $S \subseteq \mathcal{H}$ is dense, then

$$
\mathcal{F}(S)=\operatorname{Span}\left\{h \otimes k^{*}: h, k \in S\right\}=\text { "Finite-Rank Operators from } S "
$$

is $\|\cdot\|$-dense in $\mathbb{K}(\mathcal{H}) \mathcal{H}$.
(2) $\mathcal{K}(\mathcal{H})$ is SOT-dense in $\mathcal{B}(\mathcal{H}) \Rightarrow \mathcal{F}(S)$ is SOT-dense in $\mathcal{B}(\mathcal{H})$.
(3) $\operatorname{Dom}\left(D^{n}\right)$ is dense in \mathcal{H}, so $\mathcal{F}\left(\operatorname{Dom}\left(D^{n}\right)\right)$ is $\|\cdot\|$-dense in $\mathbb{K}(\mathcal{H}) \mathcal{H}$.

Proof Sketch

Theorem (I., 2018)

For each $n \in \mathbb{N}$, $\operatorname{Dom}\left(\delta^{n}\right)$ is SOT-dense in $\mathcal{B}(\mathcal{H})$.
Proof.
(1) Easy Lemma: If $S \subseteq \mathcal{H}$ is dense, then

$$
\mathcal{F}(S)=\operatorname{Span}\left\{h \otimes k^{*}: h, k \in S\right\}=\text { "Finite-Rank Operators from } S "
$$

is $\|\cdot\|$-dense in $\mathbb{K}(\mathcal{H}) \mathcal{H}$.
(2) $\mathcal{K}(\mathcal{H})$ is SOT-dense in $\mathcal{B}(\mathcal{H}) \Rightarrow \mathcal{F}(S)$ is SOT-dense in $\mathcal{B}(\mathcal{H})$.
(3) $\operatorname{Dom}\left(D^{n}\right)$ is dense in \mathcal{H}, so $\mathcal{F}\left(\operatorname{Dom}\left(D^{n}\right)\right)$ is $\|\cdot\|$-dense in $\mathbb{K}(\mathcal{H}) \mathcal{H}$.
(9) Main Step: $\mathcal{F}\left(\operatorname{Dom}\left(D^{n}\right)\right) \subset \operatorname{Dom}\left(\delta^{n}\right)$ via

$$
h, k \in \operatorname{Dom}\left(D^{n}\right) \Rightarrow h \otimes k^{*} \in \operatorname{Dom}\left(\delta^{n}\right)
$$

Proof Sketch, Main Step

Theorem (1., 2018)

For each $n \in \mathbb{N}$, $\operatorname{Dom}\left(\delta^{n}\right)$ is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Main Step: If $h, k \in \operatorname{Dom}\left(D^{n}\right)$, then $h \otimes k^{*} \in \operatorname{Dom}\left(\delta^{n}\right)$.
Proof.

Proof Sketch, Main Step

Theorem (1., 2018)

For each $n \in \mathbb{N}$, Dom $\left(\delta^{n}\right)$ is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Main Step: If $h, k \in \operatorname{Dom}\left(D^{n}\right)$, then $h \otimes k^{*} \in \operatorname{Dom}\left(\delta^{n}\right)$.
Proof.

- It suffices to show that $\forall f, g \in \mathcal{H}$,

$$
t \mapsto\left\langle\alpha_{t}\left(h \otimes k^{*}\right) f, g\right\rangle \text { is } n \text {-times differentiable. }
$$

Proof Sketch, Main Step

Theorem (1., 2018)

For each $n \in \mathbb{N}$, Dom $\left(\delta^{n}\right)$ is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Main Step: If $h, k \in \operatorname{Dom}\left(D^{n}\right)$, then $h \otimes k^{*} \in \operatorname{Dom}\left(\delta^{n}\right)$.
Proof.

- It suffices to show that $\forall f, g \in \mathcal{H}$,

$$
t \mapsto\left\langle\alpha_{t}\left(h \otimes k^{*}\right) f, g\right\rangle \text { is } n \text {-times differentiable. }
$$

- Note: $\left\langle\alpha_{t}\left(h \otimes k^{*}\right) f, g\right\rangle=\left\langle e^{i t D} h, g\right\rangle\left\langle f, e^{i t D} k\right\rangle$

Proof Sketch, Main Step

Theorem (I., 2018)

For each $n \in \mathbb{N}$, $\operatorname{Dom}\left(\delta^{n}\right)$ is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Main Step: If $h, k \in \operatorname{Dom}\left(D^{n}\right)$, then $h \otimes k^{*} \in \operatorname{Dom}\left(\delta^{n}\right)$.
Proof.

- It suffices to show that $\forall f, g \in \mathcal{H}$,

$$
t \mapsto\left\langle\alpha_{t}\left(h \otimes k^{*}\right) f, g\right\rangle \text { is } n \text {-times differentiable. }
$$

- Note: $\left\langle\alpha_{t}\left(h \otimes k^{*}\right) f, g\right\rangle=\left\langle e^{i t D} h, g\right\rangle\left\langle f, e^{i t D} k\right\rangle$
- $t \mapsto\left\langle e^{i t D} h, g\right\rangle$ and $t \mapsto\left\langle f, e^{i t D} k\right\rangle$ are n-times differentiable.

Proof Sketch, Main Step

Theorem (I., 2018)

For each $n \in \mathbb{N}$, $\operatorname{Dom}\left(\delta^{n}\right)$ is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Main Step: If $h, k \in \operatorname{Dom}\left(D^{n}\right)$, then $h \otimes k^{*} \in \operatorname{Dom}\left(\delta^{n}\right)$.
Proof.

- It suffices to show that $\forall f, g \in \mathcal{H}$,

$$
t \mapsto\left\langle\alpha_{t}\left(h \otimes k^{*}\right) f, g\right\rangle \text { is } n \text {-times differentiable. }
$$

- Note: $\left\langle\alpha_{t}\left(h \otimes k^{*}\right) f, g\right\rangle=\left\langle e^{i t D} h, g\right\rangle\left\langle f, e^{i t D} k\right\rangle$
- $t \mapsto\left\langle e^{i t D} h, g\right\rangle$ and $t \mapsto\left\langle f, e^{i t D} k\right\rangle$ are n-times differentiable.
- thus, the product $t \mapsto\left\langle e^{i t D} h, g\right\rangle\left\langle f, e^{i t D} k\right\rangle$ is n-times differentiable.

Possible Strategy for Producing Analytic Elements for δ

Possible Strategy for Producing Analytic Elements for δ

We are now considering SOT-density of \mathcal{A}_{δ}

Possible Strategy for Producing Analytic Elements for δ

We are now considering SOT-density of $\mathcal{A}_{\delta} \subset \bigcap_{n \in \mathbb{N}} \operatorname{Dom}\left(\delta^{n}\right)$.

Possible Strategy for Producing Analytic Elements for δ

We are now considering SOT-density of $\mathcal{A}_{\delta} \subset \bigcap_{n \in \mathbb{N}} \operatorname{Dom}\left(\delta^{n}\right)$.

Previous Method:

$\operatorname{Dom}\left(D^{n}\right)$ is dense in $\mathcal{H} \rightsquigarrow \mathcal{F}\left(\operatorname{Dom}\left(D^{n}\right)\right)$ is dense in $\mathbb{K}(\mathcal{H}) \mathcal{H}$ $\rightsquigarrow \operatorname{Dom}\left(\delta^{n}\right) \cap \mathcal{F}(\mathcal{H})$ is dense in $\mathbb{K}(\mathcal{H}) \mathcal{H}$
$\rightsquigarrow \operatorname{Dom}\left(\delta^{n}\right)$ SOT-dense in $\mathcal{B}(\mathcal{H})$

Possible Strategy for Producing Analytic Elements for δ

We are now considering SOT-density of $\mathcal{A}_{\delta} \subset \bigcap_{n \in \mathbb{N}} \operatorname{Dom}\left(\delta^{n}\right)$.

Previous Method:

$$
\begin{aligned}
\operatorname{Dom}\left(D^{n}\right) \text { is dense in } \mathcal{H} & \rightsquigarrow \mathcal{F}\left(\operatorname{Dom}\left(D^{n}\right)\right) \text { is dense in } \mathbb{K}(\mathcal{H}) \mathcal{H} \\
& \rightsquigarrow \operatorname{Dom}\left(\delta^{n}\right) \cap \mathcal{F}(\mathcal{H}) \text { is dense in } \mathbb{K}(\mathcal{H}) \mathcal{H} \\
& \rightsquigarrow \operatorname{Dom}\left(\delta^{n}\right) \text { SOT-dense in } \mathcal{B}(\mathcal{H})
\end{aligned}
$$

Possible Method:

$$
\begin{aligned}
\mathcal{A}_{D} \text { is dense in } \mathcal{H} & \rightsquigarrow \mathcal{F}\left(\mathcal{A}_{D}\right) \text { is dense in } \mathbb{K}(\mathcal{H}) \mathcal{H} \\
& \rightsquigarrow \mathcal{A}_{\delta} \cap \mathcal{F}(\mathcal{H}) \text { is dense in } \mathbb{K}(\mathcal{H}) \mathcal{H} \\
& \rightsquigarrow \mathcal{A}_{\delta} \text { SOT-dense in } \mathcal{B}(\mathcal{H})
\end{aligned}
$$

Possible Strategy for Producing Analytic Elements for δ

We are now considering SOT-density of $\mathcal{A}_{\delta} \subset \bigcap_{n \in \mathbb{N}} \operatorname{Dom}\left(\delta^{n}\right)$.

Previous Method:

$\operatorname{Dom}\left(D^{n}\right)$ is dense in $\mathcal{H} \rightsquigarrow \mathcal{F}\left(\operatorname{Dom}\left(D^{n}\right)\right)$ is dense in $\mathbb{K}(\mathcal{H}) \mathcal{H}$ $\rightsquigarrow \operatorname{Dom}\left(\delta^{n}\right) \cap \mathcal{F}(\mathcal{H})$ is dense in $\mathbb{K}(\mathcal{H}) \mathcal{H}$ $\rightsquigarrow \operatorname{Dom}\left(\delta^{n}\right)$ SOT-dense in $\mathcal{B}(\mathcal{H})$

Possible Method:

\mathcal{A}_{D} is dense in $\mathcal{H} \rightsquigarrow \mathcal{F}\left(\mathcal{A}_{D}\right)$ is dense in $\mathbb{K}(\mathcal{H}) \mathcal{H}$ $\rightsquigarrow \mathcal{A}_{\delta} \cap \mathcal{F}(\mathcal{H})$ is dense in $\mathbb{K}(\mathcal{H}) \mathcal{H}$ $\rightsquigarrow \mathcal{A}_{\delta}$ SOT-dense in $\mathcal{B}(\mathcal{H})$

Proof Sketch, Main Step

Main Step: If $h, k \in \mathcal{A}_{D}$, then $h \otimes k^{*} \in \mathcal{A}_{\delta}$.

Proof Sketch, Main Step

Main Step: If $h, k \in \mathcal{A}_{D}$, then $h \otimes k^{*} \in \mathcal{A}_{\delta}$.

- It suffices to show that $\exists \lambda>0$ s.t. $\forall f, g \in \mathcal{H}$,

$$
t \mapsto\left\langle e^{i t D} h, g\right\rangle\left\langle f, e^{i t D} k\right\rangle \text { extends to an analytic map on } I_{\lambda} .
$$

Proof Sketch, Main Step

Main Step: If $h, k \in \mathcal{A}_{D}$, then $h \otimes k^{*} \in \mathcal{A}_{\delta}$.

- It suffices to show that $\exists \lambda>0$ s.t. $\forall f, g \in \mathcal{H}$,

$$
t \mapsto\left\langle e^{i t D} h, g\right\rangle\left\langle f, e^{i t D} k\right\rangle \text { extends to an analytic map on } I_{\lambda} .
$$

- $\exists \lambda_{h}>0$ s.t. $\forall g \in \mathcal{H}$,

$$
t \mapsto\left\langle e^{i t D} h, g\right\rangle \text { extends to an analytic function on } I_{\lambda_{h}} .
$$

Proof Sketch, Main Step

Main Step: If $h, k \in \mathcal{A}_{D}$, then $h \otimes k^{*} \in \mathcal{A}_{\delta}$.

- It suffices to show that $\exists \lambda>0$ s.t. $\forall f, g \in \mathcal{H}$,

$$
t \mapsto\left\langle e^{i t D} h, g\right\rangle\left\langle f, e^{i t D} k\right\rangle \text { extends to an analytic map on } I_{\lambda} .
$$

- $\exists \lambda_{h}>0$ s.t. $\forall g \in \mathcal{H}$,
$t \mapsto\left\langle e^{i t D} h, g\right\rangle$ extends to an analytic function on $I_{\lambda_{h}}$.
- $\exists \lambda_{k}>0$ s.t. $\forall f \in \mathcal{H}$,
$t \mapsto\left\langle e^{i t D} k, f\right\rangle$ extends to an analytic function on $I_{\lambda_{k}}$.

Proof Sketch, Main Step

Main Step: If $h, k \in \mathcal{A}_{D}$, then $h \otimes k^{*} \in \mathcal{A}_{\delta}$.

- It suffices to show that $\exists \lambda>0$ s.t. $\forall f, g \in \mathcal{H}$,

$$
t \mapsto\left\langle e^{i t D} h, g\right\rangle\left\langle f, e^{i t D} k\right\rangle \text { extends to an analytic map on } I_{\lambda} .
$$

- $\exists \lambda_{h}>0$ s.t. $\forall g \in \mathcal{H}$,
$t \mapsto\left\langle e^{i t D} h, g\right\rangle$ extends to an analytic function on $I_{\lambda_{h}}$.
- $\exists \lambda_{k}>0$ s.t. $\forall f \in \mathcal{H}$,
$t \mapsto\left\langle e^{i t D} k, f\right\rangle$ extends to an analytic function on $I_{\lambda_{k}}$.
- BUT the extension of $t \mapsto\left\langle e^{i t D} k, f\right\rangle$ is conjugate to the extension of $t \mapsto\left\langle f, e^{i t D} k\right\rangle \ldots$

Theorem (I., 2019)

The set of analytic elements for δ is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Theorem (I., 2019)

The set of analytic elements for δ is SOT-dense in $\mathcal{B}(\mathcal{H})$.
Proof.

Theorem (I., 2019)

The set of analytic elements for δ is SOT-dense in $\mathcal{B}(\mathcal{H})$.
Proof.

- Adjust previous argument using the Riesz map:

Theorem (I., 2019)

The set of analytic elements for δ is SOT-dense in $\mathcal{B}(\mathcal{H})$.
Proof.

- Adjust previous argument using the Riesz map:

$$
\mathcal{R}: \mathcal{H} \rightarrow \mathcal{H}^{*} \text { is given by } k \mapsto \varphi_{k}
$$

where

$$
\varphi_{k}(f)=\langle f, k\rangle \text { for all } f \in \mathcal{H} .
$$

Theorem (I., 2019)

The set of analytic elements for δ is SOT-dense in $\mathcal{B}(\mathcal{H})$.
Proof.

- Adjust previous argument using the Riesz map:

$$
\mathcal{R}: \mathcal{H} \rightarrow \mathcal{H}^{*} \text { is given by } k \mapsto \varphi_{k}
$$

where

$$
\varphi_{k}(f)=\langle f, k\rangle \text { for all } f \in \mathcal{H} .
$$

- Instead of taking $h, k \in \mathcal{A}_{D}$ and trying to show $h \otimes k^{*} \in \mathcal{A}_{\delta}$,

Theorem (I., 2019)

The set of analytic elements for δ is SOT-dense in $\mathcal{B}(\mathcal{H})$.
Proof.

- Adjust previous argument using the Riesz map:

$$
\mathcal{R}: \mathcal{H} \rightarrow \mathcal{H}^{*} \text { is given by } k \mapsto \varphi_{k}
$$

where

$$
\varphi_{k}(f)=\langle f, k\rangle \text { for all } f \in \mathcal{H} .
$$

- Instead of taking $h, k \in \mathcal{A}_{D}$ and trying to show $h \otimes k^{*} \in \mathcal{A}_{\delta}$,
- Choose φ_{k} to be analytic for $\mathcal{R} D \mathcal{R}^{-1}$, and show $h \otimes k^{*} \in \mathcal{A}_{\delta}$.

Thank you!

