Analytic Vectors of a Weakly-Defined Derivation

Lara Ismert

Embry-Riddle Aeronautical University - Prescott, AZ

Joint Math Meetings, Denver, CO

AMS Special Session on C*-algebras, Dynamical Systems, and Applications

June 8, 2020

Lara Ismert

Let S be a linear operator on a Banach space X. A vector $x \in X$ is analytic for S if

Let S be a linear operator on a Banach space X. A vector $x \in X$ is analytic for S if

• $x \in \text{Dom}(S^n)$ for all $n \in \mathbb{N}$ and

Let S be a linear operator on a Banach space X. A vector $x \in X$ is analytic for S if

- $x \in \text{Dom}(S^n)$ for all $n \in \mathbb{N}$ and
- $\exists t > 0$ such that $\sum_{n=1}^{\infty} \frac{\|S^n x\|}{n!} t^n < \infty$.

Let S be a linear operator on a Banach space X. A vector $x \in X$ is analytic for S if

- $x \in \text{Dom}(S^n)$ for all $n \in \mathbb{N}$ and
- $\exists t > 0$ such that $\sum_{n=1}^{\infty} \frac{\|S^n x\|}{n!} t^n < \infty$.

Denote the set of analytic vectors for S in X by A_S .

Let S be a linear operator on a Banach space X. A vector $x \in X$ is analytic for S if

- $x \in \text{Dom}(S^n)$ for all $n \in \mathbb{N}$ and
- $\exists t > 0$ such that $\sum_{n=1}^{\infty} \frac{\|S^n x\|}{n!} t^n < \infty$.

Denote the set of analytic vectors for S in X by A_S .

Example (Nelson's Analytic Vector Theorem)

If D is a symmetric operator on a Hilbert space \mathcal{H} ,

Let S be a linear operator on a Banach space X. A vector $x \in X$ is analytic for S if

- $x \in \text{Dom}(S^n)$ for all $n \in \mathbb{N}$ and
- $\exists t > 0$ such that $\sum_{n=1}^{\infty} \frac{\|S^n x\|}{n!} t^n < \infty$.

Denote the set of analytic vectors for S in X by A_S .

Example (Nelson's Analytic Vector Theorem)

If D is a symmetric operator on a Hilbert space \mathcal{H} ,

 \mathcal{A}_D is dense in $\mathcal{H} \iff D$ is (essentially) self-adjoint.

Let S be a linear operator on a Banach space X. A vector $x \in X$ is analytic for S if

- $x \in \text{Dom}(S^n)$ for all $n \in \mathbb{N}$ and
- $\exists t > 0$ such that $\sum_{n=1}^{\infty} \frac{\|S^n x\|}{n!} t^n < \infty$.

Denote the set of analytic vectors for S in X by A_S .

Example (Nelson's Analytic Vector Theorem)

If D is a symmetric operator on a Hilbert space \mathcal{H} ,

 \mathcal{A}_D is dense in $\mathcal{H} \iff D$ is (essentially) self-adjoint.

Ample analytic vectors corresponds, in some sense, to stronger continuity.

Theorem (I., 2019)

The analytic vectors for δ_D are SOT-dense in $\mathcal{B}(\mathcal{H})$.

Theorem (I., 2019)

The analytic vectors for δ_D are SOT-dense in $\mathcal{B}(\mathcal{H})$.

Obefine a second notion of analyticity with respect to a flow on a Banach space.

Theorem (I., 2019)

The analytic vectors for δ_D are SOT-dense in $\mathcal{B}(\mathcal{H})$.

- Define a second notion of analyticity with respect to a flow on a Banach space.
- Q Relate this notion and the original definition.

Theorem (I., 2019)

The analytic vectors for δ_D are SOT-dense in $\mathcal{B}(\mathcal{H})$.

- Of Define a second notion of analyticity with respect to a flow on a Banach space.
- Q Relate this notion and the original definition.

③ Give a constructive proof of analytic vector density in the SOT.

Fix a closed subspace $F \subseteq X^*$. Let $\{\sigma_t\}_{t \in \mathbb{R}}$ be a $\sigma(X, F)$ -continuous group of isometries on X.

Fix a closed subspace $F \subseteq X^*$. Let $\{\sigma_t\}_{t \in \mathbb{R}}$ be a $\sigma(X, F)$ -continuous group of isometries on X.

Definition

A vector $x \in X$ is analytic for $\{\sigma_t\}_{t \in \mathbb{R}}$ if

Fix a closed subspace $F \subseteq X^*$. Let $\{\sigma_t\}_{t \in \mathbb{R}}$ be a $\sigma(X, F)$ -continuous group of isometries on X.

Definition

A vector $x \in X$ is analytic for $\{\sigma_t\}_{t \in \mathbb{R}}$ if there exists a map $x : I_\lambda \to X$ s.t.

Fix a closed subspace $F \subseteq X^*$. Let $\{\sigma_t\}_{t \in \mathbb{R}}$ be a $\sigma(X, F)$ -continuous group of isometries on X.

Definition

A vector $x \in X$ is analytic for $\{\sigma_t\}_{t \in \mathbb{R}}$ if there exists a map $x : I_\lambda \to X$ s.t.

• $x(t) = \sigma_t(x)$ for all $t \in \mathbb{R}$

Fix a closed subspace $F \subseteq X^*$. Let $\{\sigma_t\}_{t \in \mathbb{R}}$ be a $\sigma(X, F)$ -continuous group of isometries on X.

Definition

A vector $x \in X$ is analytic for $\{\sigma_t\}_{t \in \mathbb{R}}$ if there exists a map $x : I_\lambda \to X$ s.t.

•
$$x(t) = \sigma_t(x)$$
 for all $t \in \mathbb{R}$ (so $x(0) = x$)

Fix a closed subspace $F \subseteq X^*$. Let $\{\sigma_t\}_{t \in \mathbb{R}}$ be a $\sigma(X, F)$ -continuous group of isometries on X.

Definition

A vector $x \in X$ is analytic for $\{\sigma_t\}_{t \in \mathbb{R}}$ if there exists a map $x : I_\lambda \to X$ s.t.

• $x(t) = \sigma_t(x)$ for all $t \in \mathbb{R}$ (so x(0) = x) and

Fix a closed subspace $F \subseteq X^*$. Let $\{\sigma_t\}_{t \in \mathbb{R}}$ be a $\sigma(X, F)$ -continuous group of isometries on X.

Definition

A vector $x \in X$ is analytic for $\{\sigma_t\}_{t \in \mathbb{R}}$ if there exists a map $x : I_\lambda \to X$ s.t.

- $x(t) = \sigma_t(x)$ for all $t \in \mathbb{R}$ (so x(0) = x) and
- $z \mapsto \varphi(x(z))$ is analytic on I_{λ} for all $\varphi \in F$.

Fix a closed subspace $F \subseteq X^*$. Let $\{\sigma_t\}_{t \in \mathbb{R}}$ be a $\sigma(X, F)$ -continuous group of isometries on X.

Definition

A vector $x \in X$ is analytic for $\{\sigma_t\}_{t \in \mathbb{R}}$ if there exists a map $x : I_\lambda \to X$ s.t.

• $x(t) = \sigma_t(x)$ for all $t \in \mathbb{R}$ (so x(0) = x) and

•
$$z \mapsto \varphi(x(z))$$
 is analytic on I_{λ} for all $\varphi \in F$.

Fix a closed subspace $F \subseteq X^*$. Let $\{\sigma_t\}_{t \in \mathbb{R}}$ be a $\sigma(X, F)$ -continuous group of isometries on X.

Definition

A vector $x \in X$ is analytic for $\{\sigma_t\}_{t \in \mathbb{R}}$ if there exists a map $x : I_\lambda \to X$ s.t.

- $x(t) = \sigma_t(x)$ for all $t \in \mathbb{R}$ (so x(0) = x) and
- $z \mapsto \varphi(x(z))$ is analytic on I_{λ} for all $\varphi \in F$.

Example of an Analytic Vector for a Flow

Definition

A vector $x \in X$ is analytic for $\{\sigma_t\}_{t \in \mathbb{R}}$ if there exists a map $x : I_{\lambda} \to X$ s.t.

•
$$x(t) = \sigma_t(x)$$
 for all $t \in \mathbb{R}$ (so $x(0) = x$) and

• $z \mapsto \varphi(x(z))$ is analytic on I_{λ} for all $\varphi \in F$.

Example of an Analytic Vector for a Flow

Definition

A vector $x \in X$ is analytic for $\{\sigma_t\}_{t \in \mathbb{R}}$ if there exists a map $x : I_\lambda \to X$ s.t.

•
$$x(t) = \sigma_t(x)$$
 for all $t \in \mathbb{R}$ (so $x(0) = x$) and

• $z \mapsto \varphi(x(z))$ is analytic on I_{λ} for all $\varphi \in F$.

Example

Let $\{U_t\}_{t\in\mathbb{R}}$ be a strongly-continuous group of unitaries on \mathcal{H} . Given $h \in \mathcal{H}$, define $h(t) := U_t h$. Then h is analytic for $\{U_t\}_{t\in\mathbb{R}}$ if $\forall k \in \mathcal{H}$,

 $t\mapsto \langle h(t),k
angle$ extends to an analytic function on a complex region I_{λ} .

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

If D is a (possibly unbounded) self-adjoint operator on \mathcal{H} , then

If D is a (possibly unbounded) self-adjoint operator on \mathcal{H} , then

• $\{e^{itD}\}_{t\in\mathbb{R}}$ is a strongly continuous group of unitaries. [Stone, 1932]

If D is a (possibly unbounded) self-adjoint operator on \mathcal{H} , then

- $\{e^{itD}\}_{t\in\mathbb{R}}$ is a strongly continuous group of unitaries. [Stone, 1932]
- D has a dense set of analytic vectors in \mathcal{H} . [Nelson, 1959]

If D is a (possibly unbounded) self-adjoint operator on \mathcal{H} , then

- $\{e^{itD}\}_{t\in\mathbb{R}}$ is a strongly continuous group of unitaries. [Stone, 1932]
- D has a dense set of analytic vectors in \mathcal{H} . [Nelson, 1959]

If D is a (possibly unbounded) self-adjoint operator on \mathcal{H} , then

- $\{e^{itD}\}_{t\in\mathbb{R}}$ is a strongly continuous group of unitaries. [Stone, 1932]
- D has a dense set of analytic vectors in \mathcal{H} . [Nelson, 1959]

Proposition If $h \in \mathcal{H}$, then $h \in \mathcal{A}_D \iff h$ is analytic for $\{e^{itD}\}_{t \in \mathbb{R}}$.

In fact, if S is the infinitesimal generator of a $\sigma(X, F)$ -continuous group of isometries $\{\sigma_t\}_{t \in \mathbb{R}}$ on X, then

$$x \in \mathcal{A}_{\mathcal{S}} \iff x \text{ is analytic for } \{\sigma_t\}_{t \in \mathbb{R}}.$$

For each $t \in \mathbb{R}$, define $\alpha_t : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ by

$$\alpha_t(x) = e^{itD} x e^{-itD} \quad \forall x \in \mathcal{B}(\mathcal{H}).$$

For each $t \in \mathbb{R}$, define $\alpha_t : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ by

$$\alpha_t(x) = e^{itD} x e^{-itD} \quad \forall x \in \mathcal{B}(\mathcal{H}).$$

• $\{\alpha_t\}_{t\in\mathbb{R}}$ is (among other topologies) WOT-continuous.

For each $t \in \mathbb{R}$, define $\alpha_t : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ by

$$\alpha_t(x) = e^{itD} x e^{-itD} \quad \forall x \in \mathcal{B}(\mathcal{H}).$$

- $\{\alpha_t\}_{t\in\mathbb{R}}$ is (among other topologies) WOT-continuous.
- the infinitesimal generator δ is a symmetric map on a subset of $\mathcal{B}(\mathcal{H})$.

For each $t \in \mathbb{R}$, define $\alpha_t : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ by

$$\alpha_t(x) = e^{itD} x e^{-itD} \quad \forall x \in \mathcal{B}(\mathcal{H}).$$

• $\{\alpha_t\}_{t\in\mathbb{R}}$ is (among other topologies) WOT-continuous.

• the infinitesimal generator δ is a symmetric map on a subset of $\mathcal{B}(\mathcal{H})$.

Definition

An operator $x \in \mathcal{B}(\mathcal{H})$ is weakly *D*-differentiable if $\exists y \in \mathcal{B}(\mathcal{H})$ s.t.

$$\lim_{t\to 0} \left| \left\langle \left(\frac{\alpha_t(x) - x}{t} - y \right) h, k \right\rangle \right| = 0 \text{ for all } h, k \in \mathcal{H}.$$

For each $t \in \mathbb{R}$, define $\alpha_t : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ by

$$\alpha_t(x) = e^{itD} x e^{-itD} \quad \forall x \in \mathcal{B}(\mathcal{H}).$$

• $\{\alpha_t\}_{t\in\mathbb{R}}$ is (among other topologies) WOT-continuous.

• the infinitesimal generator δ is a symmetric map on a subset of $\mathcal{B}(\mathcal{H})$.

Definition

An operator $x \in \mathcal{B}(\mathcal{H})$ is weakly *D*-differentiable if $\exists y \in \mathcal{B}(\mathcal{H})$ s.t.

$$\lim_{t\to 0} \left| \left\langle \left(\frac{\alpha_t(x) - x}{t} - y \right) h, k \right\rangle \right| = 0 \text{ for all } h, k \in \mathcal{H}.$$

Notation: $x \in \text{Dom}(\delta)$ and $\delta(x) = -iy$, so $\delta : \text{Dom}(\delta) \to \mathcal{B}(\mathcal{H})$.

Lara Ismert

э.

・ロト ・日 ・ ・ ヨ ・ ・

Theorem (E. Christensen, 2016)

The following are equivalent:

Theorem (E. Christensen, 2016)

The following are equivalent:

• $x \in \text{Dom}(\delta)$.

Theorem (E. Christensen, 2016)

The following are equivalent:

- $x \in \text{Dom}(\delta)$.
- [iD, x] is defined and bounded on a core \mathcal{C} .

Theorem (E. Christensen, 2016)

The following are equivalent:

- $x \in \text{Dom}(\delta)$.
- [iD, x] is defined and bounded on a core \mathbb{C} .

If either of the above conditions hold, $\delta(x)|_{\mathcal{C}} = [iD, x]$.

Theorem (E. Christensen, 2016)

The following are equivalent:

- $x \in \text{Dom}(\delta)$.
- [iD, x] is defined and bounded on a core \mathbb{C} .

If either of the above conditions hold, $\delta(x)|_{\mathcal{C}} = [iD, x]$.

Note: $\mathcal{A}_{\delta} \subset \text{Dom}(\delta)$.

Theorem (E. Christensen, 2016)

The following are equivalent:

- $x \in \text{Dom}(\delta)$.
- [iD, x] is defined and bounded on a core \mathcal{C} .

If either of the above conditions hold, $\delta(x)|_{\mathfrak{C}} = [iD, x]$.

Note: $A_{\delta} \subset \text{Dom}(\delta)$. How "big" is $\text{Dom}(\delta)$?

Theorem (E. Christensen, 2016)

The following are equivalent:

- $x \in \text{Dom}(\delta)$.
- [iD, x] is defined and bounded on a core \mathcal{C} .

If either of the above conditions hold, $\delta(x)|_{\mathfrak{C}} = [iD, x]$.

Note: $A_{\delta} \subset \text{Dom}(\delta)$. How "big" is $\text{Dom}(\delta)$?

Theorem (E. Christensen, 2015)

 $Dom(\delta)$ is a SOT-dense *-subalgebra of $\mathcal{B}(\mathcal{H})$.

Theorem (E. Christensen, 2016)

The following are equivalent:

- $x \in \text{Dom}(\delta)$.
- [iD, x] is defined and bounded on a core \mathcal{C} .

If either of the above conditions hold, $\delta(x)|_{\mathfrak{C}} = [iD, x]$.

Note: $A_{\delta} \subset \text{Dom}(\delta)$. How "big" is $\text{Dom}(\delta)$?

Theorem (E. Christensen, 2015)

 $Dom(\delta)$ is a SOT-dense *-subalgebra of $\mathcal{B}(\mathcal{H})$.

Furthermore, $\mathcal{A}_{\delta} \subset \text{Dom}(\delta^n)$ for all $n \in \mathbb{N}$.

Theorem (E. Christensen, 2016)

The following are equivalent:

- $x \in \text{Dom}(\delta)$.
- [iD, x] is defined and bounded on a core \mathcal{C} .

If either of the above conditions hold, $\delta(x)|_{\mathfrak{C}} = [iD, x]$.

Note: $A_{\delta} \subset \text{Dom}(\delta)$. How "big" is $\text{Dom}(\delta)$?

Theorem (E. Christensen, 2015)

 $Dom(\delta)$ is a SOT-dense *-subalgebra of $\mathcal{B}(\mathcal{H})$.

Furthermore, $\mathcal{A}_{\delta} \subset \text{Dom}(\delta^n)$ for all $n \in \mathbb{N}$. So, how "big" is $\text{Dom}(\delta^n)$?

Theorem (E. Christensen, 2016)

The following are equivalent:

- $x \in \text{Dom}(\delta)$.
- [iD, x] is defined and bounded on a core \mathcal{C} .

If either of the above conditions hold, $\delta(x)|_{\mathfrak{C}} = [iD, x]$.

Note: $A_{\delta} \subset \text{Dom}(\delta)$. How "big" is $\text{Dom}(\delta)$?

Theorem (E. Christensen, 2015)

 $Dom(\delta)$ is a SOT-dense *-subalgebra of $\mathcal{B}(\mathcal{H})$.

Furthermore, $\mathcal{A}_{\delta} \subset \text{Dom}(\delta^n)$ for all $n \in \mathbb{N}$. So, how "big" is $\text{Dom}(\delta^n)$?

Theorem (I., 2018)

For each $n \in \mathbb{N}$, Dom (δ^n) is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Theorem (I., 2018)

For each $n \in \mathbb{N}$, Dom (δ^n) is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Proof.

- 3 ► ►

Theorem (I., 2018)

For each $n \in \mathbb{N}$, Dom (δ^n) is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Proof.

Q Easy Lemma: If $S \subseteq \mathcal{H}$ is dense, then

 $\mathcal{F}(S) = \text{Span}\{h \otimes k^* : h, k \in S\} = \text{"Finite-Rank Operators from S"}$

is $\|\cdot\|$ -dense in $\mathbb{K}(\mathcal{H})\mathcal{H}$.

Theorem (I., 2018)

For each $n \in \mathbb{N}$, Dom (δ^n) is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Proof.

Q Easy Lemma: If $S \subseteq \mathcal{H}$ is dense, then

 $\mathcal{F}(S) = \text{Span}\{h \otimes k^* : h, k \in S\} =$ "Finite-Rank Operators from S"

is $\|\cdot\|$ -dense in $\mathbb{K}(\mathcal{H})\mathcal{H}$.

2 $\mathcal{K}(\mathcal{H})$ is SOT-dense in $\mathcal{B}(\mathcal{H})$

Theorem (I., 2018)

For each $n \in \mathbb{N}$, Dom (δ^n) is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Proof.

Q Easy Lemma: If $S \subseteq \mathcal{H}$ is dense, then

 $\mathcal{F}(S) = \text{Span}\{h \otimes k^* : h, k \in S\} =$ "Finite-Rank Operators from S"

is $\|\cdot\|$ -dense in $\mathbb{K}(\mathcal{H})\mathcal{H}$.

2 $\mathcal{K}(\mathcal{H})$ is SOT-dense in $\mathcal{B}(\mathcal{H}) \Rightarrow \mathcal{F}(S)$ is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Theorem (I., 2018)

For each $n \in \mathbb{N}$, Dom (δ^n) is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Proof.

Q Easy Lemma: If $S \subseteq \mathcal{H}$ is dense, then

 $\mathcal{F}(S) = \text{Span}\{h \otimes k^* : h, k \in S\} =$ "Finite-Rank Operators from S"

is $\|\cdot\|$ -dense in $\mathbb{K}(\mathcal{H})\mathcal{H}$.

- **2** $\mathcal{K}(\mathcal{H})$ is SOT-dense in $\mathcal{B}(\mathcal{H}) \Rightarrow \mathcal{F}(S)$ is SOT-dense in $\mathcal{B}(\mathcal{H})$.
- **3** Dom (D^n) is dense in \mathcal{H} , so $\mathcal{F}(\text{Dom}(D^n))$ is $\|\cdot\|$ -dense in $\mathbb{K}(\mathcal{H})\mathcal{H}$.

Theorem (I., 2018)

For each $n \in \mathbb{N}$, Dom (δ^n) is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Proof.

Q Easy Lemma: If $S \subseteq \mathcal{H}$ is dense, then

 $\mathcal{F}(S) = \text{Span}\{h \otimes k^* : h, k \in S\} =$ "Finite-Rank Operators from S"

is $\|\cdot\|$ -dense in $\mathbb{K}(\mathcal{H})\mathcal{H}$.

- **2** $\mathcal{K}(\mathcal{H})$ is SOT-dense in $\mathcal{B}(\mathcal{H}) \Rightarrow \mathcal{F}(S)$ is SOT-dense in $\mathcal{B}(\mathcal{H})$.
- **3** Dom (D^n) is dense in \mathcal{H} , so $\mathcal{F}(\text{Dom}(D^n))$ is $\|\cdot\|$ -dense in $\mathbb{K}(\mathcal{H})\mathcal{H}$.
- **3** Main Step: $\mathcal{F}(\text{Dom}(D^n)) \subset \text{Dom}(\delta^n)$ via

$$h, k \in \mathsf{Dom}\,(D^n) \Rightarrow h \otimes k^* \in \mathsf{Dom}\,(\delta^n)$$

For each $n \in \mathbb{N}$, Dom (δ^n) is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Main Step: If $h, k \in \text{Dom}(D^n)$, then $h \otimes k^* \in \text{Dom}(\delta^n)$.

Proof.

For each $n \in \mathbb{N}$, Dom (δ^n) is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Main Step: If $h, k \in \text{Dom}(D^n)$, then $h \otimes k^* \in \text{Dom}(\delta^n)$.

Proof.

• It suffices to show that $\forall f, g \in \mathcal{H}$,

 $t \mapsto \langle \alpha_t(h \otimes k^*)f, g \rangle$ is *n*-times differentiable.

For each $n \in \mathbb{N}$, Dom (δ^n) is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Main Step: If $h, k \in \text{Dom}(D^n)$, then $h \otimes k^* \in \text{Dom}(\delta^n)$.

Proof.

• It suffices to show that $\forall f,g \in \mathcal{H},$

 $t \mapsto \langle \alpha_t(h \otimes k^*)f, g \rangle$ is *n*-times differentiable.

• Note: $\langle \alpha_t(h \otimes k^*)f, g \rangle = \langle e^{itD}h, g \rangle \langle f, e^{itD}k \rangle$

For each $n \in \mathbb{N}$, Dom (δ^n) is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Main Step: If $h, k \in \text{Dom}(D^n)$, then $h \otimes k^* \in \text{Dom}(\delta^n)$.

Proof.

• It suffices to show that $\forall f,g \in \mathcal{H},$

 $t \mapsto \langle \alpha_t(h \otimes k^*)f, g \rangle$ is *n*-times differentiable.

• Note: $\langle \alpha_t(h \otimes k^*)f, g \rangle = \langle e^{itD}h, g \rangle \langle f, e^{itD}k \rangle$ • $t \mapsto \langle e^{itD}h, g \rangle$ and $t \mapsto \langle f, e^{itD}k \rangle$ are *n*-times differentiable.

For each $n \in \mathbb{N}$, Dom (δ^n) is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Main Step: If $h, k \in \text{Dom}(D^n)$, then $h \otimes k^* \in \text{Dom}(\delta^n)$.

Proof.

• It suffices to show that $\forall f,g \in \mathcal{H},$

 $t\mapsto \langle lpha_t(h\otimes k^*)f,g
angle$ is *n*-times differentiable.

- Note: $\langle \alpha_t(h \otimes k^*)f, g \rangle = \langle e^{itD}h, g \rangle \langle f, e^{itD}k \rangle$
- $t\mapsto \left\langle e^{itD}h,g\right\rangle$ and $t\mapsto \left\langle f,e^{itD}k
 ight
 angle$ are *n*-times differentiable.
- thus, the product $t\mapsto \left\langle e^{itD}h,g
 ight
 angle \left\langle f,e^{itD}k
 ight
 angle$ is *n*-times differentiable.

We are now considering SOT-density of A_{δ}

We are now considering SOT-density of $\mathcal{A}_{\delta} \subset \bigcap_{n \in \mathbb{N}} \text{Dom}(\delta^n)$.

We are now considering SOT-density of $\mathcal{A}_{\delta} \subset \bigcap_{n \in \mathbb{N}} \text{Dom}(\delta^n)$.

Previous Method:

Dom (D^n) is dense in $\mathcal{H} \rightsquigarrow \mathcal{F}(\text{Dom}(D^n))$ is dense in $\mathbb{K}(\mathcal{H})\mathcal{H}$ $\rightsquigarrow \text{Dom}(\delta^n) \cap \mathcal{F}(\mathcal{H})$ is dense in $\mathbb{K}(\mathcal{H})\mathcal{H}$ $\rightsquigarrow \text{Dom}(\delta^n)$ SOT-dense in $\mathcal{B}(\mathcal{H})$

We are now considering SOT-density of $\mathcal{A}_{\delta} \subset \bigcap_{n \in \mathbb{N}} \text{Dom}(\delta^n)$.

Previous Method:

Dom (D^n) is dense in $\mathcal{H} \rightsquigarrow \mathcal{F}(\text{Dom}(D^n))$ is dense in $\mathbb{K}(\mathcal{H})\mathcal{H}$ $\rightsquigarrow \text{Dom}(\delta^n) \cap \mathcal{F}(\mathcal{H})$ is dense in $\mathbb{K}(\mathcal{H})\mathcal{H}$ $\rightsquigarrow \text{Dom}(\delta^n)$ SOT-dense in $\mathcal{B}(\mathcal{H})$

Possible Method:

 $\begin{array}{l} \mathcal{A}_D \text{ is dense in } \mathcal{H} \rightsquigarrow \mathcal{F}(\mathcal{A}_D) \text{ is dense in } \mathbb{K}(\mathcal{H})\mathcal{H} \\ \qquad \qquad \rightsquigarrow \mathcal{A}_\delta \cap \mathcal{F}(\mathcal{H}) \text{ is dense in } \mathbb{K}(\mathcal{H})\mathcal{H} \\ \qquad \qquad \qquad \rightsquigarrow \mathcal{A}_\delta \text{ SOT-dense in } \mathcal{B}(\mathcal{H}) \end{array}$

We are now considering SOT-density of $\mathcal{A}_{\delta} \subset \bigcap_{n \in \mathbb{N}} \text{Dom}(\delta^n)$.

Previous Method:

Dom (D^n) is dense in $\mathcal{H} \rightsquigarrow \mathcal{F}(\text{Dom}(D^n))$ is dense in $\mathbb{K}(\mathcal{H})\mathcal{H}$ $\rightsquigarrow \text{Dom}(\delta^n) \cap \mathcal{F}(\mathcal{H})$ is dense in $\mathbb{K}(\mathcal{H})\mathcal{H}$ $\rightsquigarrow \text{Dom}(\delta^n)$ SOT-dense in $\mathcal{B}(\mathcal{H})$

Possible Method:

 $\mathcal{A}_{D} \text{ is dense in } \mathcal{H} \rightsquigarrow \mathcal{F}(\mathcal{A}_{D}) \text{ is dense in } \mathbb{K}(\mathcal{H})\mathcal{H}$ $\rightsquigarrow \mathcal{A}_{\delta} \cap \mathcal{F}(\mathcal{H}) \text{ is dense in } \mathbb{K}(\mathcal{H})\mathcal{H}$ $\rightsquigarrow \mathcal{A}_{\delta} \text{ SOT-dense in } \mathcal{B}(\mathcal{H})$

Main Step: If $h, k \in \mathcal{A}_D$, then $h \otimes k^* \in \mathcal{A}_{\delta}$.

Main Step: If $h, k \in A_D$, then $h \otimes k^* \in A_\delta$.

• It suffices to show that $\exists \lambda > 0$ s.t. $\forall f, g \in \mathcal{H}$,

 $t\mapsto \left\langle e^{itD}h,g
ight
angle \left\langle f,e^{itD}k
ight
angle$ extends to an analytic map on $I_{\lambda}.$

Main Step: If $h, k \in A_D$, then $h \otimes k^* \in A_\delta$.

• It suffices to show that $\exists \lambda > 0$ s.t. $\forall f, g \in \mathcal{H}$,

 $t\mapsto \left\langle e^{itD}h,g\right\rangle \left\langle f,e^{itD}k\right\rangle$ extends to an analytic map on I_{λ} .

• $\exists \lambda_h > 0 \text{ s.t. } \forall g \in \mathcal{H}$,

 $t\mapsto \left\langle e^{itD}h,g
ight
angle$ extends to an analytic function on I_{λ_h} .

Main Step: If $h, k \in A_D$, then $h \otimes k^* \in A_\delta$.

• It suffices to show that $\exists \lambda > 0$ s.t. $\forall f, g \in \mathcal{H}$,

$$\begin{split} t &\mapsto \left\langle e^{itD}h, g \right\rangle \left\langle f, e^{itD}k \right\rangle \text{ extends to an analytic map on } I_{\lambda}. \\ \bullet \ \exists \lambda_h > 0 \text{ s.t. } \forall g \in \mathcal{H}, \\ t &\mapsto \left\langle e^{itD}h, g \right\rangle \text{ extends to an analytic function on } I_{\lambda_h}. \\ \bullet \ \exists \lambda_k > 0 \text{ s.t. } \forall f \in \mathcal{H}, \\ t &\mapsto \left\langle e^{itD}k, f \right\rangle \text{ extends to an analytic function on } I_{\lambda_k}. \end{split}$$

伺 ト イ ヨ ト イ ヨ

Main Step: If $h, k \in A_D$, then $h \otimes k^* \in A_\delta$.

• It suffices to show that $\exists \lambda > 0$ s.t. $\forall f, g \in \mathcal{H}$,

 $t \mapsto \left\langle e^{itD}h, g \right\rangle \left\langle f, e^{itD}k \right\rangle \text{ extends to an analytic map on } I_{\lambda}.$ • $\exists \lambda_h > 0 \text{ s.t. } \forall g \in \mathcal{H}.$

 $t\mapsto \left\langle e^{itD}h,g
ight
angle$ extends to an analytic function on I_{λ_h} .

• $\exists \lambda_k > 0 \text{ s.t. } \forall f \in \mathcal{H}$,

 $t\mapsto \left\langle e^{itD}k,f
ight
angle$ extends to an analytic function on $I_{\lambda_k}.$

• BUT the extension of $t \mapsto \langle e^{itD}k, f \rangle$ is conjugate to the extension of $t \mapsto \langle f, e^{itD}k \rangle$...

The set of analytic elements for δ is SOT-dense in $\mathcal{B}(\mathcal{H})$.

The set of analytic elements for δ is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Proof.

The set of analytic elements for δ is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Proof.

• Adjust previous argument using the Riesz map:

The set of analytic elements for δ is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Proof.

• Adjust previous argument using the Riesz map:

$$\mathcal{R}: \mathcal{H} \to \mathcal{H}^*$$
 is given by $k \mapsto \varphi_k$

where

$$\varphi_k(f) = \langle f, k \rangle$$
 for all $f \in \mathcal{H}$.

The set of analytic elements for δ is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Proof.

• Adjust previous argument using the Riesz map:

$$\mathfrak{R}:\mathcal{H}\to\mathcal{H}^*$$
 is given by $k\mapsto \varphi_k$

where

$$\varphi_k(f) = \langle f, k \rangle$$
 for all $f \in \mathcal{H}$.

• Instead of taking $h, k \in A_D$ and trying to show $h \otimes k^* \in A_{\delta}$,

The set of analytic elements for δ is SOT-dense in $\mathcal{B}(\mathcal{H})$.

Proof.

• Adjust previous argument using the Riesz map:

$$\mathfrak{R}:\mathcal{H}\to\mathcal{H}^*$$
 is given by $k\mapsto \varphi_k$

where

$$\varphi_k(f) = \langle f, k \rangle$$
 for all $f \in \mathcal{H}$.

- Instead of taking $h, k \in A_D$ and trying to show $h \otimes k^* \in A_{\delta}$,
- Choose φ_k to be analytic for \mathcal{RDR}^{-1} , and show $h \otimes k^* \in \mathcal{A}_{\delta}$.

Thank you!