It's a Noncommutative World After All

Lara Ismert
University of Nebraska-Lincoln

Math Club! © University of Texas at Tyler

February 18, 2019

Outline

(1) Noncommutative Happenings in Everyday Life
(2) A Quantum System

- The Double Slit Experiment
- Quantum Measurements via Integration
(3) Probability turned Quantum
(9) The Heisenberg Uncertainty Principle

Noncommutative Happenings in Everyday Life

Commutative Operations: For any real numbers a and b,

$$
a+b=b+a \text { and } a b=b a
$$

"Addition and multiplication are commutative."

Noncommutative Operations:

- Getting dressed
- Doing laundry
- Function composition

Example

If $f(x)=x^{2}$ and $g(x)=x+1$, does $f(g(x))=g(f(x))$?

$$
f(g(x))=(x+1)^{2} \text { and } g(f(x))=x^{2}+1
$$

Examples of Noncommutative Operations

- Getting dressed
- Doing laundry
- Function composition

Example

If $f(x)=x^{2}$ and $g(x)=x+1$, does $f(g(x))=g(f(x))$?
No: $(x+1)^{2} \neq x^{2}+1$.
$\Rightarrow f$ and g do not commute under function composition:

$$
f \circ g \neq g \circ f
$$

Composition of Function Transformations

Function transformations are functions on functions.

- Translations: Apply T_{c} to a function f by $\left[T_{c} f\right](x)=f(x)+c$.
- Scaling: Apply S_{d} to a function f by $\left[S_{d} f\right](x)=d f(x)$.

Example

Do T_{c} and S_{d} commute with respect to function composition? That is, for any function f, does

$$
\left(T_{c} \circ S_{d}\right) f=\left(S_{d} \circ T_{c}\right) f ?
$$

Consider $c=1$ and $d=2$.
https://www.desmos.com/calculator/axkqbn7se3

Composition of Function Transformations

- Multiplication: Apply Q to f by $[Q f](x)=x f(x)$.
- Differentiation: Apply P to f by $[P f](x)=f^{\prime}(x) \cdot i=i f^{\prime}(x)$.

Example

Do Q and P commute with respect to function composition? That is, for any function f, does

$$
(Q \circ P) f=(P \circ Q) f ?
$$

$$
(P \circ Q) f-(Q \circ P) f=i f
$$

The transformations P and Q are known as the "momentum" and "position" transformations. This relation is known as the

> Heisenberg Commutation Relation.

The Double Slit Experiment

(1) Shoot electrons out of a (stationary) electron beam at a screen with two slits cut in it.
(2) A second screen (behind the first) detects where the electrons land.

Figure: If electrons were paintballs.

The Double Slit Experiment

(1) Shoot electrons out of a (stationary) electron beam at a screen with two slits cut in it.
(2) A second screen (behind the first) detects where the electrons land.

Figure: Paintballs through two slits.

The Double Slit Experiment

(1) Shoot electrons out of a (stationary) electron beam at a screen with two slits cut in it.
(2) A second screen (behind the first) detects where the electrons land.

Figure: Actual Double Slit Experiment.

The Double Slit Experiment

Conclusions: Electrons are not paintballs, nor do they behave like them. Instead, electrons (and other quantum particles) behave much like waves-unpredictably. But, they do behave probabilistically.

A particle's motion is represented by a function, ψ, that contains probabilistic information.
(1) We call ψ the state of the particle.
(2) We require $\psi(x) \cdot \psi(x)=\psi(x)^{2}$ to be a probability density function:

$$
\int_{-\infty}^{\infty} \psi(x)^{2} d x=1
$$

Quantum States

How do we compare two states ψ and ϕ ?

$$
\langle\psi, \phi\rangle=\int_{-\infty}^{\infty} \psi(x) \cdot \phi(x) d x
$$

Think of the dot product of two unit vectors:

Figure: $\mathbf{a} \cdot \mathbf{b}=\cos \theta$.
$\Rightarrow\langle\psi, \phi\rangle$ is measuring some geometric difference between ψ and ϕ.
https://www.desmos.com/calculator/utix5squrb

Quantum Measurements

Why did we call Q the position transformation?

- If $\psi(x)^{2}$ is the p.d.f. for position, the expected value is

$$
\int_{-\infty}^{\infty} x \psi(x)^{2} d x=\int_{-\infty}^{\infty} x \psi(x) \cdot \psi(x) d x=\langle Q \psi, \psi\rangle
$$

- Let $E(Q):=\langle Q \psi, \psi\rangle$.

Let's use this same idea for momentum:

$$
E(P)=\langle P \psi, \psi\rangle=\int_{-\infty}^{\infty} i \psi^{\prime}(x) \cdot \psi(x) d x
$$

What's the idea behind the expected value?

Expected Values

Example

Consider a probability mass function $\psi(x)^{2}=p(x)$ on the positions $x=\{0,1,2\}$ given by

$$
p(0)=0.5 \quad p(1)=0.3 \quad p(2)=0.2 \text {. }
$$

Note: $\sum_{n=0}^{2} p(n)=1$.
Then the expected value of the position is
$E(Q)=\sum_{n=0}^{2} n p(n)=0 p(0)+1 p(1)+2 p(2)=0(0.5)+1(0.3)+2(0.2)=0.7$.
So an expected value is a weighted average.

Expected Values

Example

Let $p(x)=\frac{1}{2}\left(1-\left|\frac{1}{2} x\right|\right)$ for $-2 \leq x \leq 2$, and $p(x)=0$ otherwise.

- Note: $\int_{-\infty}^{\infty} p(x) d x=1$.

Where do you expect to find the particle?

$$
E(Q)=\int_{-\infty}^{\infty} x p(x) d x=0
$$

How certain are you that you'll find it near $x=0$?

More Ideas from Probability

Moral: Less spread in probability relates to higher certainty.
Goal: Minimize the variance, the square of the standard deviation

$$
\sigma^{2}=E\left(Q^{2}\right)-E(Q)^{2}
$$

Simultaneous Pursuit for Certainty

Can we simultaneously improve our certainty of $E(Q)$ and $E(P)$?

- Let $\tau^{2}=E\left(P^{2}\right)-E(P)^{2}$ be the variance for P.
- Let's try to simultaneously minimize σ^{2} and τ^{2} by minimizing $\sigma^{2} \tau^{2}$.

Let's be clever!

$$
\begin{gathered}
\sigma^{2}=E\left(Q^{2}\right)-E(Q)^{2}=E\left(Q^{2}\right)-2 E(Q)^{2}+E(Q)^{2} \\
=\int_{-\infty}^{\infty} x^{2} \psi(x)^{2} d x-2 E(Q) \int_{-\infty}^{\infty} x \psi(x)^{2} d x+E(Q)^{2} \int_{-\infty}^{\infty} \psi(x)^{2} d x \\
=\int_{-\infty}^{\infty} x^{2} \psi(x)^{2}-2 E(Q) x \psi(x)^{2}+E(Q)^{2} \psi(x)^{2} d x \\
=\int_{-\infty}^{\infty}\left[x^{2}-2 E(Q) x+E(Q)^{2}\right] \psi(x)^{2} d x=\int_{-\infty}^{\infty}[x-E(Q)]^{2} \psi(x)^{2} d x
\end{gathered}
$$

Simultaneous Pursuit for Certainty

So

$$
\sigma^{2}=\int_{-\infty}^{\infty}[x-E(Q)]^{2} \psi(x)^{2} d x=\int_{-\infty}^{\infty} \hat{Q}^{2} \psi(x)^{2} d x
$$

Similarly,

$$
\tau^{2}=\int_{-\infty}^{\infty} \hat{P}^{2} \psi(x)^{2} d x
$$

Now,

$$
\sigma^{2}=\int_{-\infty}^{\infty} \hat{Q} \psi(x) \cdot \hat{Q} \psi(x) d x=\langle\hat{Q} \psi, \hat{Q} \psi\rangle
$$

and

$$
\tau^{2}=\int_{-\infty}^{\infty} \hat{P} \psi(x) \cdot \hat{P} \psi(x) d x=\langle\hat{P} \psi, \hat{P} \psi\rangle
$$

Simultaneous Pursuit for Certainty

Thus far, we've reduced the product of the variances σ^{2} and τ^{2} to

$$
\sigma^{2} \tau^{2}=\langle\hat{Q} \psi, \hat{Q} \psi\rangle\langle\hat{P} \psi, \hat{P} \psi\rangle .
$$

Recall the dot product of a vector \mathbf{a} with itself is $\mathbf{a} \cdot \mathbf{a}=\|\mathbf{a}\|^{2}$. Similarly,

$$
\sigma^{2} \tau^{2}=\|\hat{Q} \psi\|^{2}\|\hat{P} \psi\|^{2}
$$

Again, using the dot product for guidance,

$$
\begin{gathered}
\|\mathbf{a}\|\|\mathbf{b}\| \geq|\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta|=|\mathbf{a} \cdot \mathbf{b}| \\
\Rightarrow\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2} \geq|\mathbf{a} \cdot \mathbf{b}|^{2} \\
\Rightarrow \sigma^{2} \tau^{2}=\|\hat{Q} \psi\|^{2}\|\hat{P} \psi\|^{2} \geq|\langle\hat{Q} \psi, \hat{P} \psi\rangle|^{2} .
\end{gathered}
$$

Simultaneous Pursuit for Certainty

The inequality $\sigma^{2} \tau^{2} \geq|\langle\hat{Q} \psi, \hat{P} \psi\rangle|^{2}$ still depends on ψ. Note that

$$
\langle\hat{Q} \psi, \hat{P} \psi\rangle=\langle(\hat{P} \circ \hat{Q}) \psi, \psi\rangle .
$$

Now, $\sigma^{2} \tau^{2} \geq|\langle(\hat{P} \circ \hat{Q}) \psi, \psi\rangle|^{2}$. Let's be clever again!

$$
\begin{gathered}
\hat{P} \circ \hat{Q}=\frac{1}{2}(\hat{P} \circ \hat{Q})+\frac{1}{2}(\hat{P} \circ \hat{Q})=\frac{1}{2}(\hat{P} \circ \hat{Q}+\hat{Q} \circ \hat{P})+\frac{1}{2} i . \\
\Rightarrow \sigma^{2} \tau^{2} \geq|\langle(\hat{P} \circ \hat{Q}) \psi, \psi\rangle|^{2}=\left|\left\langle\left[\frac{1}{2}(\hat{P} \circ \hat{Q}+\hat{Q} \circ \hat{P})+\frac{1}{2} i\right] \psi, \psi\right\rangle\right|^{2} \\
=\left|\left\langle\frac{1}{2}(\hat{P} \circ \hat{Q}+\hat{Q} \circ \hat{P}) \psi, \psi\right\rangle+i\left(\frac{1}{2}\langle\psi, \psi\rangle\right)\right|^{2}
\end{gathered}
$$

Simultaneous Pursuit for Certainty

The inequality $\sigma^{2} \tau^{2} \geq|\langle\hat{Q} \psi, \hat{P} \psi\rangle|^{2}$ still depends on ψ. Note that

$$
\langle\hat{Q} \psi, \hat{P} \psi\rangle=\langle(\hat{P} \circ \hat{Q}) \psi, \psi\rangle .
$$

Now, $\sigma^{2} \tau^{2} \geq|\langle(\hat{P} \circ \hat{Q}) \psi, \psi\rangle|^{2}$. Let's be clever again!

$$
\begin{gathered}
\hat{P} \circ \hat{Q}=\frac{1}{2}(\hat{P} \circ \hat{Q})+\frac{1}{2}(\hat{P} \circ \hat{Q})=\frac{1}{2}(\hat{P} \circ \hat{Q}+\hat{Q} \circ \hat{P})+\frac{1}{2} i \\
\Rightarrow \sigma^{2} \tau^{2} \geq|\langle(\hat{P} \circ \hat{Q}) \psi, \psi\rangle|^{2}=\left|\left\langle\left[\frac{1}{2}(\hat{P} \circ \hat{Q}+\hat{Q} \circ \hat{P})+\frac{1}{2} i\right] \psi, \psi\right\rangle\right|^{2} \\
=\left|\left\langle\frac{1}{2}(\hat{P} \circ \hat{Q}+\hat{Q} \circ \hat{P}) \psi, \psi\right\rangle+i\left(\frac{1}{2}\right)\right|^{2}
\end{gathered}
$$

Simultaneous Pursuit for Certainty

The inequality $\sigma^{2} \tau^{2} \geq|\langle\hat{Q} \psi, \hat{P} \psi\rangle|^{2}$ still depends on ψ. Note that

$$
\langle\hat{Q} \psi, \hat{P} \psi\rangle=\langle(\hat{P} \circ \hat{Q}) \psi, \psi\rangle .
$$

Now, $\sigma^{2} \tau^{2} \geq|\langle(\hat{P} \circ \hat{Q}) \psi, \psi\rangle|^{2}$. Let's be clever again!

$$
\begin{gathered}
\hat{P} \circ \hat{Q}=\frac{1}{2}(\hat{P} \circ \hat{Q})+\frac{1}{2}(\hat{P} \circ \hat{Q})=\frac{1}{2}(\hat{P} \circ \hat{Q}+\hat{Q} \circ \hat{P})+\frac{1}{2} i \\
\Rightarrow \sigma^{2} \tau^{2} \geq|\langle(\hat{P} \circ \hat{Q}) \psi, \psi\rangle|^{2}=\left|\left\langle\left[\frac{1}{2}(\hat{P} \circ \hat{Q}+\hat{Q} \circ \hat{P})+\frac{1}{2} i\right] \psi, \psi\right\rangle\right|^{2} \\
=\left|\left\langle\frac{1}{2}(\hat{P} \circ \hat{Q}+\hat{Q} \circ \hat{P}) \psi, \psi\right\rangle+i\left(\frac{1}{2}\right)\right|^{2}
\end{gathered}
$$

Heisenberg Uncertainty Principle

Therefore, $\sigma^{2} \tau^{2} \geq \frac{1}{2}^{2}=\frac{1}{4}$. Although σ^{2} and τ^{2} depend on ψ, the product of their variances is bounded below by $\frac{1}{4}$, independent of ψ.

This is known as the Heisenberg Uncertainty Principle.
https://www.desmos.com/calculator/txeovzdmbl

Thank you!

