
A NONCOMMUTATIVE WORLD

Introductory Examples

Set Operation Commutative Noncommutative

R + X

R × X

Rn + X

Rn × X

Vectors in R3 cross product ~v × ~w = −~w × ~v
Functions on R + X

Functions on R × X

Functions on R ◦ specific to the functions

Transformations of R2 ◦ X

Transformations of the xy-plane
Let’s look at functions that map points on the plane to new points on the
plane.

1. Translations: Xt moves a point (x, y) by t in the positive x-direction:

Xt(x, y) = (x+ t, y).

Similarly, Yt moves a point (x, y) by t in the positive y-direction:

Yt(x, y) = (x, y + t).

Remark :

X2(Y−3(x, y)) = X2(x, y−3) = (x+2, y−3) = Y−3(x+2, y) = Y−3(X2(x, y)).

In fact, for any horizontal shift s and vertical shift t,

Xs(Yt(x, y)) = Xs(x, y+t) = (x+s, y+t) = Xs(x, y+t) = Yt(Xs(x, y)),

so Xs and Yt commute under composition for any choice of s and t!

2. Rotations: Denote rotation of the plane by an angle of θ in the coun-
terclockwise direction by Uθ. Some examples include:

Uπ/2(x, y) = (−y, x), Uπ(x, y) = (−x,−y).
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Remark : Rotations commute under composition! This is easier to see
using 2× 2 matrices, but we won’t go into that here.

Question: Do translations and rotations commute under composition?
No.

X1(Uπ(x, y)) = X1(−x,−y) = (−x+ 1,−y),

while

Uπ(X1(x, y)) = Uπ(x+ 1, y) = (−(x+ 1), y) = (−x− 1, y).

3. Scales: We could scale the plane by a factor of c :

Sc(x, y) = (cx, cy).

4. Reflections: Denote reflection across the y axis by Ry and reflection
across the x-axis by Rx, so Rx(x, y) = (x,−y) and Ry(x, y) = (−x, y).

Remark : While Rx and Ry do commute under composition, reflections
and rotations do not.

Rx(Uπ/2(x, y)) = Rx(−y, x) = (−y,−x),

while
Uπ/2(Rx(x, y)) = Uπ/2(x,−y) = (y, x).

Transformations of functions on R
By moving points around in R2, we are intrinsically transforming functions.
A function can be thought of in R2 by the set of points (x, f(x)).

1. Translations: If Xt moves a point (x, y) by t in the positive x-direction:

Xt(x, f(x)) = (x+ t, f(x)).

The graph of the points (x+t, f(x)) is the same as the points (x, f(x−
t)). So, Xt sends a function f(x) to the new function f(x− t).

Similarly, Yt moves a point (x, y) by t in the positive y-direction:
Yt(x, f(x)) = (x, f(x) + t). So, Yt sends a function f(x) to the new
function f(x) + t.
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2. Rotations: This doesn’t really work for functions on the real line be-
cause many functions when rotated will no longer pass the vertical line
test.

3. Scales: Since Sc(x, f(x)) = (cx, cf(x)), This is the same as all points(
x, cf

(
1
cx
))
.

4. Reflections: Recall Rx(x, f(x)) = (x,−f(x)), so Rx sends a function
f(x) to the new function −f(x). Similarly, Ry(x, f(x)) = (−x, f(x)).
This is the same as the set of all points (x, f(−x)), so Ry sends a
function f(x) to f(−x).

5. Multiplication by another function Notice reflection across the x-axis
is really just multiplication by the function h(x) = −1. I.e.,

Rx(f(x)) = −f(x) = h(x)f(x).

Couldn’t we let g(x) = x2, and then take a function f(x) and send it
to the new function g(x) · f(x)?

6. Derivatives Unlike the previous more geometric transformations of
functions, we can think of sending a (differentiable) function to its
derivative as a transformation. Let’s call D this transformation:

D(f(x)) = f ′(x).

Why all the fuss about changing our perspective from transformations on
R2 to transformations of functions on R? Well, as you can see in #5 and #6,
there are a lot more flexibility in transformations we can define on functions
than we can on the xy-plane. Also, quantum mechanics!

A basic example in QM
Experiments, such as the “Double Slit” experiment, tipped physicists off
that particles do not move like little billiard balls, but like waves. In other
words, it’s really hard for us to know where they are and where they’re
headed.

Heisenberg Uncertainty Principle. We can never know with full
certainty where a particle is and its velocity at the same time.
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Suppose a particle, like an electron, is confined to move on the real line.
I don’t know where my particle will be at a fixed moment in time, I only
know how likely it is for the particle to be in any given position on the real
line. Perhaps my particle has a 10% chance of being at x = 0. Then, it
can only have a 90% chance of being anywhere else on the real line at that
same moment. The assignment of the other probabilities yields a function,
p(x), which tells us the probability that the particle is at x. For example,
p(0) = .1. We need ∫ ∞

−∞
p(x) dx = 1.

This kind of a function is called a probability density function.

Example: NOT SMOOTH DRAWING OF PDF.
Example: SMOOTH DRAWING OF PDF.

Definition. 1 The expected value of a probability density function f(x) is
given by the integral ∫ ∞

−∞
xf(x) dx.

Example. 1 (Discrete!) Suppose my particle has a 30% chance of being
at 1, a 20% chance of being at 2, and a 50% chance of being at 3. I have
a probability mass function f(1) = .3, f(2) = .2, and f(3) = .5. Then, my
particle’s expected position is

1f(1) + 2f(2) + 3f(3) = 1(0.3) + 2(0.2) + 3(0.5) = 0.3 + 0.4 + 1.5 = 2.2.

So, the expected value of a function is a weighted average.

Example. 2 (Continuous!) Suppose my particle has a p.d.f. given by

p(x) =
1√
2π
e−x

2/2.

This is called the standard normal distribution.
GRAPH!
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Let’s calculate the expected value of f(x).∫ ∞
−∞

xp(x) dx =

∫ ∞
−∞

x · e
−x2/2
√

2π
dx

=
1√
2π

lim
b→∞

∫ b

−b
xe−x

2/2 dx

=
1√
2π

lim
b→∞

∫ b2/2

b2/2
e−u du

=
1√
2π

lim
b→∞

0

= 0

This makes sense! Look at my graph!

Remark: pa(x) := 1√
2π
e−(x−a)

2
2 is also a p.d.f. and has expected value a.

Like the position, the particle’s velocity at a fixed moment in time is given
by some other p.d.f., let’s call it v(x), so

∫∞
−∞ v(x) dx = 1. The particle’s

expected velocity is then ∫ ∞
−∞

xv(x) dx.

Theorem. 1 (Fourier) If p(x) is the position p.d.f. for a particle at a fixed
time and v(x) is the velocity p.d.f. at that same fixed time, then∫ ∞

−∞
xv(x) dx =

∫ ∞
−∞

p′(x) dx.

Heisenberg Uncertainty Principle
Note that xf(x) is given by a transformation–let h(x) = x, so f(x) 7→
h(x)f(x) is this transformation. Let’s call this transformation Q.
Given that

∫∞
−∞ xp(x) dx =

∫∞
−∞Q(p(x)) dx gives the expected position and∫∞

−∞ p
′(x) dx =

∫∞
−∞D(p(x)) dx gives the expected velocity of the particle,

we can see how the function transformations Q and D can be seen as “mea-
suring” the position and velocity of the particle.

If we want to know both the position and velocity of the particle, and
we want to know both with certainty, we should be able to measure the
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position and then immediately following that, measure the velocity, and get
the same result as measuring velocity and then immediately after that the
position. What this would look like is:

(D ◦Q)f(x) = D(Q(f(x)) = D(xf(x)) = xf ′(x) + f(x)

and
(Q ◦D)f(x) = Q(D(f(x)) = Q(f ′(x)) = xf ′(x).

How “far off” are these two measurements? Well,

(D ◦Q)f(x)− (Q ◦D)f(x) = xf ′(x) + f(x)− xf ′(x) = f(x).

So, unless f(x) = 0 for all x, which is no longer a probability density func-
tion, these two measurements are yielding a way different outcome!

My Research
In addition to the position and velocity of a particle, we want to know
how much energy is stored up in this line from the particle’s motion. To
measure this, we use a transformation called the Hamiltonian, let’s call it H.

The expected position and velocity can only be computed for single
moments in time using the transformations Q and D. My research focuses
on how quickly these expected values change with respect to time. What
this requires is an understanding of this power series of operators:

Q+ [H,Q]t+
1

2
[H, [H,Q]]t2 +

1

3!
[H, [H, [H,Q]]]t3 + ...

and

D + [H,D]t+
1

2
[H, [H,D]]t2 +

1

3!
[H, [H, [H,D]]]t3 + ...

Does this look familiar? For differentiable functions f and t close to 0

f(t) = f(0) + f ′(0)t+
1

2
f

′′
(0)t2 +

1

3!
f

′′′
(0)t3 + ...

This is a Taylor series expansion of f , which requires taking derivatives
of all powers. The above formulas involving Q, D, and H require, then,
“derivatives” of transformations. Thank you!
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