Quantum Edge Correspondences

Lara Ismert

joint w/ M. Brannan, M. Hamidi, B. Nelson, M. Wasilewski

Joint Math Meetings, Boston, MA AMS Special Session on Advances in Operator Algebras

January 7, 2023

A classical graph's edge correspondence

Let G = (V, A) be a finite simple graph. The edge set E for G is

$$E = \{(v, w) : A_{vw} = 1\} \subseteq V \times V$$
 (read from right to left).

Definition

The edge correspondence for G is the C*-correspondence $C(E) \subseteq C(V \times V)$ over C(V) where for any $\xi, \eta \in C(E)$, $f \in C(V)$, $(v, w) \in E$:

$$(\xi \cdot f)(v, w) := \xi(v, w)f(v)
 (f \cdot \xi)(v, w) := f(w)\xi(v, w)
 \langle \xi, \eta \rangle(v) = \sum_{v \leftarrow w} \overline{\xi(v, w)}\eta(v, w)$$

Can construct the Cuntz–Pimsner algebra \mathcal{O}_E , which is universal with respect to covariant Toeplitz representations of C(E).

Quantum graphs

In a quantum graph...

Definition

a finite vertex set is replaced by a finite quantum set consisting of

• a state ψ that is a δ -form

Definition

The adjacency matrix is replaced by a *quantum adjacency matrix*, a linear map $A: B \rightarrow B$ which is **quantum Schur idempotent**:

$$m(A\otimes A)m^* = \delta^2 A$$

Example

Let G = (V, A) be a finite simple graph. $\rightsquigarrow (C(V), \frac{1}{|V|}, A)$ is a quantum graph w/ $\delta^2 = n^2$.

Quantum edge correspondences

Consider the generator 1_E of C(E) inside $C(V) \otimes C(V)$ as a C(V)-correspondence:

$$1_E = \sum_{e \in E} \xi_e = \sum_{(v,w) \in V \times V} A_{vw} \xi_{(v,w)} = \sum_{(v,w) \in V \times V} p_v \otimes A_{vw} p_w.$$

Definition (BHINW, 2022)

Let $\mathcal{G} := (B, \psi, A)$ be a quantum graph. The quantum edge correspondence E for \mathcal{G} is the C^* -correspondence generated by $\varepsilon := \frac{1}{\delta^2} (\operatorname{id} \otimes A) m^*(1_B)$ over B:

$$\operatorname{span}\{x \cdot \varepsilon \cdot y : x, y \in B\} \subseteq B \otimes_{\psi} B.$$

Examples of quantum edge correspondences

Let (B, ψ) be a finite quantum set. Let $A : B \to B$ be given by

Example (Complete quantum graph) $A(x) = \delta^2 \psi(x) \mathbf{1}_B$. Then $\varepsilon = \frac{1}{\delta^2} (\operatorname{id} \otimes A) m^*(\mathbf{1}_B) = \mathbf{1}_B \otimes \mathbf{1}_B$, so $E = \operatorname{span} \{ x \cdot \mathbf{1}_B \otimes \mathbf{1}_B \cdot y : x, y \in B \} = \operatorname{span} \{ x \otimes y : x, y \in B \}$

is all of $B \otimes_{\psi} B$. Makes sense!

Example (Trivial quantum graph) A(x) = x. Then $\varepsilon = \frac{1}{\delta^2} (id \otimes A)m^*(1_B) = \frac{1}{\delta^2}m^*(1_B)$, so $E = \operatorname{span}\{x \cdot m^*(1_B) \cdot y : x, y \in B\} = m^*(B)$,

which is isomorphic to B as B-correspondences. Makes sense!

Faithfulness and fullness of edge correspondences

Given a C^* -correspondence X over a C^* -algebra \mathcal{A} ,

- X is faithful if $a \cdot x = 0 \ \forall x \in X \Rightarrow a = 0$
- X is full if $\overline{\text{span}}\{\langle \xi, \eta \rangle_{\mathcal{A}} : \xi, \eta \in X\} = \mathcal{A}.$

Example (Classical edge correspondence) Let G = (V, A) be a finite simple graph. Recall following structure:

Let G = (V, A) be a finite simple graph. Recall following structure: for any $\xi, \eta \in C(E)$, $f \in C(V)$, $(v, w) \in E$,

1.
$$(\xi \cdot f)(v, w) := \xi(v, w)f(v)$$

2. $(f \cdot \xi)(v, w) := f(w)\xi(v, w)$
3. $\langle \xi, \eta \rangle(v) = \sum_{v \leftarrow w} \overline{\xi(v, w)}\eta(v, w)$

Fact:

• If
$$w \in V$$
 is a sink, then $\forall v \in V$, $(v, w) \notin E$. $\Rightarrow p_w \cdot \xi = 0 \ \forall \xi \in E$.

▶ If $v \in V$ is a source, then $\forall \xi, \eta \in C(E)$, sum in item 3 is 0⇒ $p_v \notin \langle C(E), C(E) \rangle_{C(V)}$.

Properties of C^* -correspondences

Let (B, ψ, A) be a quantum graph and E its edge correspondence.

Theorem

Given $x, y, z, w \in B$, we have the following helpful formula:

$$\langle x \cdot \epsilon \cdot y, w \cdot \epsilon \cdot z \rangle_B = \frac{1}{\delta^2} y^* A(x^* w) z.$$

Theorem

- 1. *E* is faithful if and only if has no quantum sources, i.e., no central summand of *B* belongs to ker(*A*).
- 2. E is full if and only if G has no quantum sinks, i.e., no central summand of B is \perp to A(B).

Cuntz-Pimsner algebras of quantum edge correspondences

If G = (V, A) is a finite simple graph with edge correspondence C(E) with no sinks, its Cuntz–Krieger algebra \mathcal{O}_A is isomorphic to the Cuntz–Pimsner algebra $\mathcal{O}_{C(E)}$.

Question: If \mathcal{G} is a quantum graph with quantum edge correspondence E, when is it true that the quantum Cuntz-Krieger algebra $\mathcal{O}(\mathcal{G})$ is isomorphic to the Cunz-Pimsner algebra \mathcal{O}_E ?

Theorem (BHINW, 2022)

Let \mathcal{G} be a quantum graph with no quantum sources and let E be its quantum edge correspondence. Define $J(\mathcal{G})$ to be the ideal in $\mathcal{O}(\mathcal{G})$ generated by "local QCK relations." Then

 $\mathcal{O}(\mathcal{G})/J(\mathcal{G})\cong \mathcal{O}_E.$

Thank you!