Distinguishing C^* -algebras related to quantum graphs

Lara Ismert w/ M. Hamidi and B. Nelson

Great Plains Operator Theory Symposium University of Nebraska - Lincoln

June 4, 2024

1/16

C^* -algebras associated to graphs

Let G = (V, A) be a finite simple graph.

Definition

A Cuntz–Krieger (CK) G-family is a representation $S: V \rightarrow \mathcal{D}$ satisfying

•
$$S_i S_i^* S_i = S_i \quad \forall i \in V$$

•
$$S_i^*S_i = \sum_{j \in V} A_{ij}S_jS_j^* \quad \forall i \in V$$

•
$$\sum_{i\in V} S_i S_i^* = 1$$

The Cuntz–Krieger algebra \mathcal{O}_A is the C*-algebra generated by a universal CK G-family.

Theorem (Well-known)

When G is row-finite and has no sources, $\mathcal{O}_A \cong \mathcal{O}_E$, where E is the edge correspondence for G and \mathcal{O}_E is its Cuntz–Pimsner algebra.

When G is a quantum graph,

- \mathcal{G} has an analogous Cuntz–Krieger algebra, $\mathcal{O}(\mathcal{G})$
- \mathcal{G} has an analogous C^* -correspondence $E_{\mathcal{G}}$

Question: For a quantum graph \mathcal{G} , does the analogous isomorphism $\mathcal{O}(\mathcal{G}) \cong \mathcal{O}_{E_{\mathcal{G}}}$ hold? Do we want it to?

Quantum graphs

Recall: Given a finite simple graph G = (V, A), the algebra C(V) is just $\mathbb{C}^{|V|}$ and $A : C(V) \to C(V)$ is a linear Schur (entry-wise) idempotent. \star

Definition

A (finite) quantum set is a (finite-dimensional) C^* -algebra B equipped with a special type of state ψ . A quantum Schur idempotent on (B, ψ) is a linear map $A : B \to B$ such that

$$m(A \otimes A)m^* = (\dim B)A$$

A quantum graph is a triple (B, ψ , A). \star

Example

Given G = (V, A), let B := C(V) and $\psi(p_v) = \frac{1}{|V|} \forall v \in V$. Then $\mathcal{G} = (B, \psi, A)$ is a quantum graph.

Quantum Cuntz-Krieger algebras

Let $\mathcal{G} := (B, \psi, A)$ be a quantum graph.

Definition

A QCK *G*-family is a representation $S : B \rightarrow D$ such that

• $\mu(\mu \otimes id)(S \otimes S^* \otimes S)(m^* \otimes id)m^* = S$

•
$$\mu(S^*\otimes S)m^* = \mu(S\otimes S^*)m^*A$$

•
$$\mu(S\otimes S^*)m^*(1)=1$$

The quantum Cuntz-Krieger (QCK) algebra $\mathcal{O}(\mathcal{G})$ is the C*-algebra generated by a universal QCK \mathcal{G} -family.

When G is a classical graph, its QCK algebra $\mathcal{O}(G)$ is isomorphic to its Cuntz–Krieger algebra \mathcal{O}_A !

C^* -correspondences

Definition

A C^{*}-correspondence over B is a right Hilbert B-module E equipped with a left B-action $\varphi: B \to \mathcal{L}(E)$. *

Example

Given $E \subset V \times V$, C(E) is a natural C(V)-correspondence as a subspace of $C(V \times V) \cong C(V) \otimes C(V)$, and is generated by $\chi_E \in C(E)$.

Definition

Given a quantum graph $\mathcal{G} = (B, \psi, A)$ s.t. A is cp, define

$$\varepsilon_{\mathcal{G}} := rac{1}{\dim B} (\operatorname{id} \otimes A) m^*(1) \in B \otimes B$$

and define $E_{\mathcal{G}} := \text{Span}(\{x \cdot \varepsilon \cdot y : x, y \in B\}) \subset B \otimes B$ to be the *quantum* edge correspondence for \mathcal{G} .

Example

Let (B, ψ) be a quantum set and define $A(x) = \dim(B) \cdot \psi(x)$ 1. We call $K(B, \psi) := (B, \psi, A)$ the *complete quantum graph* on (B, ψ) .

• $\varepsilon_{K} = 1 \otimes 1$

•
$$E_{\mathcal{K}} = \operatorname{Span} \left(\{ x \cdot 1 \otimes 1 \cdot y : x, y \in B \} \right) = B \otimes B$$
.

Theorem (Brannan-Eifler-Voigt-Weber (2022))

When ψ satisfies a weird property, $\mathcal{O}(K(B, \psi))$ is isomorphic to $\mathcal{O}_{\dim B}$, the Cuntz algebra on dim B generators.

Brannan-Hamidi-I.-Nelson-Wasilewski (2023): For any (B, ψ) , the Cuntz–Pimsner algebra $\mathcal{O}_{E_{\mathcal{K}}}$ is isomorphic to $\mathcal{O}_{\dim B}$.

For certain ψ 's, $\mathcal{O}(\mathcal{K}(B,\psi)) \cong \mathcal{O}_{\mathcal{E}_{\mathcal{K}}}$.

Let *E* be a C^* -correspondence over a C^* -algebra *B*.

Definition

A Toeplitz representation of E is a pair (π, t) satisfying:

• $\pi: B \to \mathcal{D}$ *-homomorphism and $t: E \to \mathcal{D}$ linear

•
$$t(e)\pi(b) = t(e \cdot b)$$

•
$$\pi(\langle e, f \rangle) = t(e)^* t(f)$$

The Toeplitz algebra $\mathcal{T}(E)$ is the C^{*}-algebra generated by the universal Toeplitz representation.

Note: $\mathcal{T}(E)$ can be concretely constructed! Define $t_E : E \to \mathcal{L}(\mathcal{F}(E))$ by $t_E(e)\xi = e \otimes \xi$ and $\pi_E : B \to \mathcal{L}(\mathcal{F}(E))$ by $\pi_E(b)\xi = b \cdot \xi$ for all $\xi \in \mathcal{F}(E)$.

Relative Cuntz–Pimsner algebras

Let B be a f.d. C^* -algebra and E a f.d. faithful B-correspondence.

For any Toeplitz representation (π, t) of E, there is a *-representation $\psi_t : \mathcal{K}(E) \to \mathcal{L}(\mathcal{F}(E))$ given by $\psi_t(\theta_{e,f}) := t(e)t(f)^*$.

Definition

 (π, t) is co-isometric on $K \triangleleft B$ if for all $b \in K$, $\psi_t(\varphi(b)) = \pi(b) . \star$

Definition

The relative Cuntz–Pimsner algebra $\mathcal{O}(K, E)$ is the C*-algebra generated by a universal Toeplitz representation which is co-isometric on K.

•
$$K = \{0\} \Rightarrow \mathcal{O}(K, E_{\mathcal{G}}) = \mathcal{T}(E)$$

• $K = B \Rightarrow \mathcal{O}(K, E_{\mathcal{G}}) = \mathcal{O}_{E_{\mathcal{G}}}$, the Cuntz–Pimsner algebra of $E_{\mathcal{G}}$.*

QCK \mathcal{G} -families from Toeplitz representations

Let $\mathcal{G} := (B, \psi, A)$ be a quantum graph such that $E_{\mathcal{G}}$ is faithful.

Theorem (Brannan-Hamidi-I.-Nelson-Wasilewski (2023))

Every Toeplitz representation (π, t) of $E_{\mathcal{G}}$ which is co-isometric on B admits a QCK \mathcal{G} -family.

Theorem (Hamidi-I.-Nelson (2024))

Every Toeplitz representation (π, t) of $E_{\mathcal{G}}$ which is co-isometric on $K := B \cdot A(B) \cdot B$ admits a QCK \mathcal{G} -family.

Corollary

Let $K = B \cdot A(B) \cdot B$. When $E_{\mathcal{G}}$ is faithful, $\mathcal{O}(\mathcal{G})$ surjects onto $\mathcal{O}_{E_{\mathcal{G}}}$ and $\mathcal{O}(K, E_{\mathcal{G}})$, and the surjection of $\mathcal{O}(\mathcal{G})$ onto $\mathcal{O}_{E_{\mathcal{G}}}$ factors through $\mathcal{O}(K, E_{\mathcal{G}})$.

We now have $\mathcal{O}(K, E_{\mathcal{G}})$ "sitting between" $\mathcal{O}_{E_{\mathcal{G}}}$ and $\mathcal{O}(\mathcal{G})$.

Finally, a distinction

Let $\mathcal{G} := (B, \psi, A)$ be a quantum graph such that $E_{\mathcal{G}}$ is faithful.

- We have $\mathcal{O}(K, E_{\mathcal{G}})$ "sitting between" $\mathcal{O}_{E_{\mathcal{G}}}$ and $\mathcal{O}(\mathcal{G})$.
- If $K = B \cdot A(B) \cdot B$ were nontrivial and $\mathcal{O}_{E_{\mathcal{G}}}$ is simple, then $\mathcal{O}(K, E_{\mathcal{G}})$ and $O_{E_{\mathcal{G}}}$ would be distinct.
- In this case, $\mathcal{O}(\mathcal{G})$ would be different from $\mathcal{O}_{E_{\mathcal{G}}}$.

Example

Details to appear! We constructed a quantum graph \mathcal{G} whose $E_{\mathcal{G}}$ satisfies:

- $E_{\mathcal{G}}$ is faithful
- $E_{\mathcal{G}}$ is not full (so $B \cdot A(B) \cdot B$ is nontrivial)
- $E_{\mathcal{G}}$ satisfies Condition (S) (Eryzulu et. al. (2022)), so $\mathcal{O}_{E_{\mathcal{G}}}$ is simple

Corollary

Quantum Cuntz-Krieger algebras are interesting.

Thank you!