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A C*-algebra is a Banach x-algebra A which satisfies the C*-identity.

|a*al| = ||a]|® Vae A

Broad area of research: Given a base object G, construct a C*-algebra
C*(G). Ideally, (1) C*(G) remembers G in the sense that:

C(G) = C¥G') <= G~G'
and (2) sub-objects of G correspond with subalgebras of C*(G).

G = (topological) graph or group, groupoid, dynamical system
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G := (V,E,r,s) a discrete graph

A Cuntz—Krieger (CK) G-family in a C*-algebra D consists of a pair
(S, P) of representations P: V — D and S : E — D such that

e {P,: v € V} = mutually orthogonal projections
o {S.: e € E} = partial isometries

satisfying (G1) and (G2). A CK G-family (S, P) is universal if for any
other (s, p) there is a x-hom. p: C*(S, P) — C*(s, p) such that

p(Py) = py,p(Se) =se YveV,ecE.

The graph C*-algebra C*(G) for G is generated by the universal (S, P).

Suppose G is row-finite and every cycle has an entry. Hereditary saturated
subsets of V' correspond bijectively with ideals of C*(G).
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Cuntz—Krieger algebras

Let A€ My({0,1}), and define V = [d] with
E = {(I,_/) : AJ',' = 1fori,j € V}

Then G4 = (V, E) is a finite simple graph. Let (S, P) be a CK Ga-family
in D. (G1) and (G2) can be rephrased as

@ S is a partial isometry for all e € E (CK1)
(] 5:5{-‘ == Zr(e):s(f) 535: v cE (CK2)
® > ey SeS: is a unit for C*(S). (CK3)

We call S : CY — D a Cuntz—Krieger A-family.

Definition

Let A€ My({0,1}). The Cuntz—Krieger algebra O, is the C*-algebra
generated by a universal CK A-family.

When G4 has no sinks and no sources, C*(Ga) = Oa.
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Cuntz—Krieger algebras

11
11

Consider G = (V, A) with A = [

]. Then O4 = Os.

Consider the representation S, S, € B(¢2(N)) given by
(X1,X2,...) '% (0,X1,0,X2,...)
(X1,X2,...) '54 (Xl,O,XQ,O,...)

have range projections S5.5; = Pe, SoS; = P, and source projections
S5kSe =1, 5:S, = | (CK1) satisfying

@ 5.5+ 5,5k = Pe+ P, =1 (CK3)

© 535 =535, =1= 555+ S.S; (CK2).
Thus, {Se, So} is a (universal) CK G-family and C*(Se, So) is O>.
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Cuntz—Krieger algebras

Generally speaking, Cuntz—Krieger and graph C*-algebras provide an
abundance of examples of C*-algebras...

e CK algebras contain all (finitely generated) Cuntz algebras.

@ Every Q4 is a graph C*-algebra and an Exel-Laca algebra, and thus an
ultragraph C*-algebra. Each is also an étale groupoid C*-algebra.

@ Algebraic and topological features of O 4 provide dynamical
information about the Markov shift space arising from A.

Quantum graphs are rising objects of interest to the OA community.

© How do we construct a C*-algebra from a quantum graph G7 the
(local) quantum Cuntz—Krieger algebra O(G).

@ What analogous theorems can we prove about O(G)? There are so
many to explore—I'll talk about simplicity.
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Quantizing Classical Sets

Let V = [d] and consider C(V) = C9 = Span{p, : v € V}. Then C(E) is
a subspace of C(V x V) = C(V)® C(V). Define

m:C(V)®@ C(V)—= C(V) m(feg)=f-g.

For T: C(V) — C(V) linear, note mo T® T =Tom <= T is a hom.

Example
Equip C(V) with ¢(p,) = % for all v, so

m*: C(V) — C(V)® C(V) is given by m*(p,) = d(p, ® pv).

Note mm*(f) = df for all f € C(V). We say ¢ is a d-form and (C(V), 1))
is a commutative finite quantum set.

v
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Idea: Make (C(V), %) noncommutative.

Definition

A (finite) quantum set is a f.d. C*-algebra B equipped with a special type
of state 1), called a d-form, which satisfies:

L?(B® B,y ®)

P [
L2(B,9) —5g— L2(B.9)

\

Example (Tracial quantum sets)
o When B = C9, the only §-form is ¢(p,) = L Vv € [d].
@ When B = M, the only tracial d-form is the normalized trace.

@ B any f.d. C*algebra, v tracial = normalization s.t. §%> = dim B.
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Quantum adjacency matrices

Consider A € My4({0,1}) as a linear map on (C(V),v). TFAE:
o A€ My({0,1}) is a linear Schur (entry-wise) idempotent
@ moA®RAom* =dA

Definition

Let (B, ) be a quantum set. A quantum Schur idempotent on (B, %) is a
linear map A : B — B such that

moA® Ao m* = §2A.

A quantum graph is a triple (B, ), A).

v,

Every finite simple graph G4 = (V/, A) gives rise to (C(V), %, A).

v
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Quantum Cuntz—Krieger algebras

Now we want to quantize the CK relations.
G :=(B,v,A) - quantum graph, D - C*-algebra, pup:D®D — D

Definition
A QCK G-family is a linear representation S : B — D such that:
o up(pp®@id)(S®S*® S)(M* ®id)m* =S (QCK1)
° up(S*®S)mM* = pp(S® S*)m*A (QCK?2)
o up(S®S*)m*(1) =621 (QCK3)
The quantum Cuntz—Krieger (QCK) algebra O(G) is the C*-algebra
generated by the universal QCK G-family.

When G = (V, A) is a classical graph, its QCK algebra O(G) is isomorphic
to the Cuntz—Krieger algebra O 47!
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QCK algebras for complete quantum graphs

The relations defining O(G) make it pretty intractable for arbitrary G.

Example (Complete quantum graphs)

Let (B, 1) be a quantum set and define A(x) = §%¢(x)1. We call
K(B,v) := (B,4, A) the complete quantum graph on (B, ).

Theorem (Brannan-Eifler-Voigt-Weber (2022))

When the §-form 1) satisfies 6% € N, the QCK algebra O(K(B,)) is
isomorphic to the Cuntz algebra on dim B generators.

.

Theorem (Brannan-Hamidi-I.-Nelson-Wasilewski (2023))

For any (B, ), the local quantum Cuntz—Krieger algebra LO(K(B,v)) is
isomorphic to Ogim B.-

.
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Local quantum Cuntz—Krieger algebras

G :=(B,9,A) - quantum graph, D - C*-algebra, up:D® D — D

Definition
A local QCK G-family is a linear representation S : B — D such that:
o up(up ®id)(S® S*® S)(m* ®id) = 62Sm (LQCK1)
o up(S*®S) =0"2up(S®S*)m*Am (LQCK?2)
o up(S®S)m*(1) =621 (LQCK3)
The local quantum Cuntz—Krieger (QCK) algebra LO(G) is the C*-algebra
generated by the universal LQCK G-family.

The local QCK algebra LO(G) is a quotient of O(G). The previous slide
says for K(B, ) such that §2 € N, we have O(K(B, 1)) = LO(K(B,1)).

Question: Can we find G which separates LO(G) and O(G)? We
investigate by simplicity.
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Local QCK algebras for single-vertex quantum graphs

Given any quantum set (B, ), if A is completely positive, there exist
{K; - i € [p]} C B such that A(x) = 3.1,y K7 xKi for all x € B.

Example (Rank-one quantum graphs)

Let (B,%) be a quantum set and let T € B satisfy Tr(p=> T2 T,) = 62 for
all a € [d]. Then conjugation by T given by x — TxT* defines a quantum
adjacency matrix on (B, 1)), and we call (B, v, adt) a rank-one quantum

graph.

\

Theorem (Hamidi-I.-Nelson (2025))

Let G := (Mp,v, A) be a quantum graph such that A is cp. The local QCK
algebra LO(G) is Morita equivalent to the Cuntz algebra on d(A)
generators, where d(A) is the dimension of Span{K; : i € [p]}.

In particular, LO(Mp, 1, A) is simple if and only if A is not rank-one.
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Edge correspondences

Definition

Let B be a C*-algebra. A C*-correspondence over B is a right Hilbert
B-module E equipped with a left B-action ¢ : B — L(E).

Let G = (V, E) be a finite classical graph with source and range maps
s,r: E— V. Set C(V)=Span{p, :v eV}, C(E)=Span{qge:e <€ E}.
° ve(pv)(ge) == pv(s(e))qe

@ ge: pv = qepv(r(e)) L
® (ge | ar)c(v)(v) =D ger1(v) 9e(8)ar(8)

v

Note: C(E) C C(V x V) is cyclically generated by g, the “edge checker,”
as a C(V)-bimodule. Denote C(E) with this additional structure by Eg.
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Quantum edge correspondences

(B, %) - quantum set, define inner product on B ® B by
(xy|zow) =y Pp(x*z)w.

Then B ®,, B is a C*-correspondence generalizing C(V x V).

Definition

Given a quantum graph G = (B, ¢, A) s.t. Ais cp and ¢ is a d-form, define
1. N
£g = 5—2(|d ® A)m*(1) € B® B.

The quantum edge correspondence Eg is Span{x-¢-y : x,y € B}.
@ When G is classical, eg recovers xg.
@ ¢g is the “bridge” to the operator system setting.

A quantum source is a central projection 1, € B in ker(A).
A quantum sink is 1, € B which is orthogonal to B - A(B) - B.
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The quantum edge correspondence Eg is Span{x-¢-y : x,y € B}.
@ When G is classical, eg recovers xg.
@ ¢g is the “bridge” to the operator system setting.

G has no quantum sources if left action ¢ : B — L(Eg) is faithful.
G has no quantum sinks if (Eg | Eg) = B (Eg is full).
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Another C*-algebra arising from a quantum graph

Definition

The Cuntz—Pimsner algebra Ox of a C*-correspondence X is the
C*-algebra generated by a universal Toeplitz covariant representation of X.

(B,1,A) - quantum graph  Eg quantum edge correspondence

Theorem (Brannan-Hamidi-l.-Nelson-Wasilewski (2023))

When G has no quantum sources, LO(G) = Ok,;-

This realization of LO(G) as Ok, for lots of G is a key ingredient to
showing distinction from O(G).
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Another C*-algebra arising from a quantum graph

Theorem (Hamidi-l.-Nelson (2025))

When G has no quantum sources, O(G) surjects onto a relative
Cuntz—Pimsner algebra O(K, Eg), where K = B - A(B) - B.

\

Corollary

When G has no quantum sources but a nontrivial set of quantum sinks (K
is nontrivial), the canonical surjection O(K, Eg) — Og, is not injective. In
particular, O(G) is not simple.
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Simplicity of local quantum Cuntz—Krieger algebras

So far we have seen a few examples of quantum graphs whose local
quantum Cuntz—Krieger algebras are simple:

e K(B,) by explicit isomorphism with a Cuntz algebra

@ (M,, 1, A) where the span of Kraus operators for A has dimension >1
by showing Morita equivalence to a Cuntz algebra.

We can also use the Cuntz—Pimsner algebra realization of LO(G) to prove
e LO(B,,id) is non-simple by Schweizer's simplicity conditions.
e LO(Gy) is simple using Condition (S) from Eryiizli, et. al.

When G has no quantum sources but a nontrivial set of quantum sinks (K
is nontrivial), the canonical surjection O(K, Eg) — Og, is not injective. In
particular, O(G) is not simple.
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A graph which separates O(G) and LO(G)

Corollary

When G has no quantum sources but a nontrivial set of quantum sinks (K
is nontrivial), the canonical surjection O(K, Eg) — Og, is not injective. In
particular, O(G) is not simple.

There exists a quantum graph Go which has no quantum sources, a
nontrivial quantum sink, and whose edge correspondence satisfies the
conditions for simplicity of Of. Details on arXiv. Since O(G) is
non-simple, it is not isomorphic to LO(G).

o
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Thank you!
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