Cuntz-Pimsner algebras for quantum graphs

Lara Ismert, University of Nebraska-Lincoln

joint w/ Brent Nelson (MSU) & Mitch Hamidi (ERAU) Supported by NSF-DMS 2247587

April 13, 2025

Brazos Analysis Seminar, Baylor University

1/25

A C*-algebra is a Banach *-algebra \mathcal{A} which satisfies the C*-identity:

$$\|a^*a\|=\|a\|^2\quad\forall a\in\mathcal{A}.$$

Broad area of research: Given a base object G, construct a C*-algebra $C^*(G)$. Ideally, (1) $C^*(G)$ remembers G in the sense that:

$$C^*(G) \cong C^*(G') \iff G \sim G'$$

and (2) sub-objects of G correspond with subalgebras of $C^*(G)$.

G = (topological) graph or group, groupoid, dynamical system

A Cuntz-Krieger (CK) G-family in a C*-algebra \mathcal{D} consists of a pair (S, P) of representations $P: V \to \mathcal{D}$ and $S: E \to \mathcal{D}$ such that

- $\{P_v : v \in V\}$ = mutually orthogonal projections
- ${S_e : e \in E} = partial isometries$

satisfying **(G1)** and **(G2)**. A CK *G*-family (S, P) is universal if for any other (s, p) there is a *-hom. $\rho : C^*(S, P) \to C^*(s, p)$ such that

$$\rho(P_v) = p_v, \rho(S_e) = s_e \quad \forall v \in V, e \in E.$$

The graph C*-algebra $C^*(G)$ for G is generated by the universal (S, P).

Theorem

Suppose G is row-finite and every cycle has an entry. Hereditary saturated subsets of V correspond bijectively with ideals of $C^*(G)$.

Cuntz-Krieger algebras

Let $A \in M_d(\{0,1\})$, and define V = [d] with

$$E := \{(i,j) : A_{ji} = 1 \text{ for } i, j \in V\}.$$

Then $G_A = (V, E)$ is a finite simple graph. Let (S, P) be a CK G_A -family in \mathcal{D} . (G1) and (G2) can be rephrased as

•
$$S_e$$
 is a partial isometry for all $e \in E$ (CK1)
• $S_f^* S_f = \sum_{r(e)=s(f)} S_e S_e^* \quad \forall f \in E$ (CK2)
• $\sum_{e \in V} S_e S_e^*$ is a unit for $C^*(S)$. (CK3)

We call $S : \mathbb{C}^d \to \mathcal{D}$ a Cuntz–Krieger *A*-family.

Definition

Let $A \in M_d(\{0,1\})$. The Cuntz-Krieger algebra \mathcal{O}_A is the C*-algebra generated by a universal CK A-family.

When G_A has no sinks and no sources, $C^*(G_A) \cong \mathcal{O}_A$.

Cuntz-Krieger algebras

Let $A \in M_d(\{0,1\})$, and define V = [d] with

$$E := \{(i,j) : A_{ji} = 1 \text{ for } i, j \in V\}.$$

Then $G_A = (V, E)$ is a finite simple graph. Let (S, P) be a CK G_A -family in \mathcal{D} . (G1) and (G2) can be rephrased as

•
$$S_e$$
 is a partial isometry for all $e \in E$ (CK1)
• $S_f^* S_f = \sum_{r(e)=s(f)} S_e S_e^* \quad \forall f \in E$ (CK2)
• $\sum_{e \in V} S_e S_e^*$ is a unit for $C^*(S)$. (CK3)

We call $S : \mathbb{C}^d \to \mathcal{D}$ a Cuntz–Krieger *A*-family.

Definition

Let $A \in M_d(\{0,1\})$. The Cuntz-Krieger algebra \mathcal{O}_A is the C*-algebra generated by a universal CK A-family.

When G_A has no sinks and no sources, $C^*(G_A) \cong \mathcal{O}_A$.

Cuntz-Krieger algebras

Example

Consider
$$G = (V, A)$$
 with $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Then $\mathcal{O}_A \cong \mathcal{O}_2$.

Consider the representation $S_e, S_o \in \mathcal{B}(\ell^2(\mathbb{N}))$ given by

$$(x_1, x_2, \dots) \stackrel{S_e}{\mapsto} (0, x_1, 0, x_2, \dots)$$

 $(x_1, x_2, \dots) \stackrel{S_o}{\mapsto} (x_1, 0, x_2, 0, \dots)$

have range projections $S_e S_e^* = P_e$, $S_o S_o^* = P_o$ and source projections $S_e^* S_e = I$, $S_o^* S_o = I$ (CK1) satisfying

•
$$S_e S_e^* + S_o S_o^* = P_e + P_o = I$$
 (CK3)

•
$$S_e^* S_e = S_o^* S_o = I = S_e S_e^* + S_o S_o^*$$
 (CK2).

Thus, $\{S_e, S_o\}$ is a (universal) CK *G*-family and $C^*(S_e, S_o)$ is \mathcal{O}_2 .

Generally speaking, Cuntz–Krieger and graph C*-algebras provide an abundance of examples of C*-algebras...

- CK algebras contain all (finitely generated) Cuntz algebras.
- Every \mathcal{O}_A is a graph C*-algebra and an Exel-Laca algebra, and thus an ultragraph C*-algebra. Each is also an étale groupoid C*-algebra.
- Algebraic and topological features of \mathcal{O}_A provide dynamical information about the Markov shift space arising from A.

Quantum graphs are rising objects of interest to the OA community.

- How do we construct a C*-algebra from a quantum graph G? the (local) quantum Cuntz-Krieger algebra O(G).
- What analogous theorems can we prove about O(G)? There are so many to explore-I'll talk about simplicity.

Let V = [d] and consider $C(V) = \mathbb{C}^d = \text{Span} \{ p_v : v \in V \}$. Then C(E) is a subspace of $C(V \times V) \cong C(V) \otimes C(V)$. Define

$$m: C(V) \otimes C(V) \rightarrow C(V) \quad m(f \otimes g) := f \cdot g.$$

For $T : C(V) \to C(V)$ linear, note $m \circ T \otimes T = T \circ m \iff T$ is a hom.

Example

Equip
$$C(V)$$
 with $\psi(p_v) = \frac{1}{d}$ for all v , so

 $m^*: C(V) \rightarrow C(V) \otimes C(V)$ is given by $m^*(p_v) = d(p_v \otimes p_v)$.

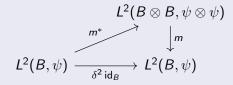
Note $mm^*(f) = df$ for all $f \in C(V)$. We say ψ is a *d*-form and $(C(V), \psi)$ is a commutative finite quantum set.

Quantum sets

Idea: Make $(C(V), \psi)$ noncommutative.

Definition

A (finite) quantum set is a f.d. C^* -algebra B equipped with a special type of state ψ , called a δ -form, which satisfies:



Example (Tracial quantum sets)

- When $B = \mathbb{C}^d$, the only δ -form is $\psi(p_v) = \frac{1}{d} \forall v \in [d]$.
- When $B = M_n$, the only tracial δ -form is the normalized trace.
- *B* any f.d. C*-algebra, ψ tracial \Rightarrow normalization s.t. $\delta^2 = \dim B$.

Quantum adjacency matrices

Consider $A \in M_d(\{0,1\})$ as a linear map on $(C(V), \psi)$.TFAE: • $A \in M_d(\{0,1\})$ is a *linear Schur (entry-wise) idempotent*

• $m \circ A \otimes A \circ m^* = dA$

Definition

Let (B, ψ) be a quantum set. A quantum Schur idempotent on (B, ψ) is a linear map $A : B \to B$ such that

$$m \circ A \otimes A \circ m^* = \delta^2 A.$$

A quantum graph is a triple (B, ψ, A) .

Example

Every finite simple graph $G_A = (V, A)$ gives rise to $(C(V), \frac{1}{d}, A)$.

Quantum Cuntz-Krieger algebras

Now we want to quantize the CK relations. $\mathcal{G} := (B, \psi, A)$ - quantum graph, \mathcal{D} - C*-algebra, $\mu_D : D \otimes D \rightarrow D$

Definition

A QCK G-family is a linear representation $S: B \rightarrow D$ such that:

- $\mu_D(\mu_D \otimes id)(S \otimes S^* \otimes S)(m^* \otimes id)m^* = S$ (QCK1)
- $\mu_D(S^* \otimes S)m^* = \mu_D(S \otimes S^*)m^*A$ (QCK2)
- $\mu_D(S \otimes S^*)m^*(1) = \delta^{-2}1$ (QCK3)

The quantum Cuntz–Krieger (QCK) algebra $\mathcal{O}(\mathcal{G})$ is the C*-algebra generated by the universal QCK \mathcal{G} -family.

When G = (V, A) is a classical graph, its QCK algebra $\mathcal{O}(G)$ is isomorphic to the Cuntz–Krieger algebra \mathcal{O}_{A^T} !

QCK algebras for complete quantum graphs

The relations defining $\mathcal{O}(\mathcal{G})$ make it pretty intractable for arbitrary \mathcal{G} .

Example (Complete quantum graphs)

Let (B, ψ) be a quantum set and define $A(x) = \delta^2 \psi(x) 1$. We call $K(B, \psi) := (B, \psi, A)$ the complete quantum graph on (B, ψ) .

Theorem (Brannan-Eifler-Voigt-Weber (2022))

When the δ -form ψ satisfies $\delta^2 \in \mathbb{N}$, the QCK algebra $\mathcal{O}(K(B, \psi))$ is isomorphic to the Cuntz algebra on dim B generators.

Theorem (Brannan-Hamidi-I.-Nelson-Wasilewski (2023))

For any (B, ψ) , the local quantum Cuntz–Krieger algebra $LO(K(B, \psi))$ is isomorphic to $\mathcal{O}_{\dim B}$.

Local quantum Cuntz-Krieger algebras

 $\mathcal{G}:=(B,\psi,A)$ - quantum graph, \mathcal{D} - C*-algebra, $\mu_D:D\otimes D o D$

Definition

A local QCK *G*-family is a linear representation $S : B \to D$ such that:

• $\mu_D(\mu_D \otimes \mathrm{id})(S \otimes S^* \otimes S)(m^* \otimes \mathrm{id}) = \delta^{-2}Sm$ (LQCK1)

•
$$\mu_D(S^* \otimes S) = \delta^{-2} \mu_D(S \otimes S^*) m^* A m$$
 (LQCK2)

•
$$\mu_D(S \otimes S^*)m^*(1) = \delta^{-2}1$$
 (LQCK3)

The *local quantum Cuntz–Krieger (QCK) algebra* LO(G) is the C*-algebra generated by the universal LQCK *G*-family.

The local QCK algebra $L\mathcal{O}(\mathcal{G})$ is a quotient of $\mathcal{O}(\mathcal{G})$. The previous slide says for $K(B, \psi)$ such that $\delta^2 \in \mathbb{N}$, we have $\mathcal{O}(K(B, \psi)) \cong L\mathcal{O}(K(B, \psi))$. Question: Can we find \mathcal{G} which separates $L\mathcal{O}(\mathcal{G})$ and $\mathcal{O}(\mathcal{G})$? We investigate by simplicity.

Local QCK algebras for single-vertex quantum graphs

Given any quantum set (B, ψ) , if A is completely positive, there exist $\{K_i : i \in [p]\} \subset B$ such that $A(x) = \sum_{i \in [p]} K_i^* x K_i$ for all $x \in B$.

Example (Rank-one quantum graphs)

Let (B, ψ) be a quantum set and let $T \in B$ satisfy $\operatorname{Tr}(\rho^{-1}T_a^*T_a) = \delta^2$ for all $a \in [d]$. Then conjugation by T given by $x \mapsto TxT^*$ defines a quantum adjacency matrix on (B, ψ) , and we call $(B, \psi, \operatorname{ad}_T)$ a rank-one quantum graph.

Theorem (Hamidi-I.-Nelson (2025))

Let $\mathcal{G} := (M_n, \psi, A)$ be a quantum graph such that A is cp. The local QCK algebra $L\mathcal{O}(\mathcal{G})$ is Morita equivalent to the Cuntz algebra on d(A) generators, where d(A) is the dimension of Span $\{K_i : i \in [p]\}$.

In particular, $LO(M_n, \psi, A)$ is simple if and only if A is not rank-one.

Definition

Let B be a C*-algebra. A C*-correspondence over B is a right Hilbert B-module E equipped with a left B-action $\varphi : B \to \mathcal{L}(E)$.

Example

Let G = (V, E) be a finite classical graph with source and range maps $s, r : E \to V$. Set $C(V) = \text{Span} \{p_v : v \in V\}$, $C(E) = \text{Span} \{q_e : e \in E\}$. • $\varphi_E(p_v)(q_e) := p_v(s(e))q_e$ • $q_e \cdot p_v := q_e p_v(r(e))$

• $\langle q_e \mid q_f \rangle_{C(V)}(v) := \sum_{g \in r^{-1}(v)} q_e(g) q_f(g)$

Note: $C(E) \subseteq C(V \times V)$ is cyclically generated by χ_E , the "edge checker," as a C(V)-bimodule. Denote C(E) with this additional structure by E_G .

Quantum edge correspondences

 (B,ψ) - quantum set, define inner product on $B\otimes B$ by

$$\langle x \otimes y \, | \, z \otimes w \rangle := y^* \psi(x^*z) w.$$

Then $B \otimes_{\psi} B$ is a C*-correspondence generalizing $C(V \times V)$.

Definition

Given a quantum graph $\mathcal{G} = (B, \psi, A)$ s.t. A is cp and ψ is a δ -form, define $\varepsilon_{\mathcal{G}} := \frac{1}{\delta^2} (\operatorname{id} \otimes A) m^*(1) \in B \otimes B.$

The quantum edge correspondence $E_{\mathcal{G}}$ is Span $\{x \cdot \varepsilon \cdot y : x, y \in B\}$.

- When \mathcal{G} is classical, $\varepsilon_{\mathcal{G}}$ recovers χ_{E} .
- $\epsilon_{\mathcal{G}}$ is the "bridge" to the operator system setting.

A quantum source is a central projection $1_a \in B$ in ker(A).

A quantum sink is $1_a \in B$ which is orthogonal to $B \cdot A(B) \cdot B$.

Quantum edge correspondences

 (B,ψ) - quantum set, define inner product on $B\otimes B$ by

$$\langle x \otimes y \, | \, z \otimes w \rangle := y^* \psi(x^*z) w.$$

Then $B \otimes_{\psi} B$ is a C*-correspondence generalizing $C(V \times V)$.

Definition

Given a quantum graph $\mathcal{G} = (B, \psi, A)$ s.t. A is cp and ψ is a δ -form, define $\varepsilon_{\mathcal{G}} := \frac{1}{\delta^2} (\operatorname{id} \otimes A) m^*(1) \in B \otimes B.$

The quantum edge correspondence $E_{\mathcal{G}}$ is Span { $x \cdot \varepsilon \cdot y : x, y \in B$ }.

- When \mathcal{G} is classical, $\varepsilon_{\mathcal{G}}$ recovers χ_{E} .
- $\epsilon_{\mathcal{G}}$ is the "bridge" to the operator system setting.

 \mathcal{G} has no quantum sources if left action $\varphi : B \to \mathcal{L}(E_{\mathcal{G}})$ is faithful. \mathcal{G} has no quantum sinks if $\langle E_{\mathcal{G}} | E_{\mathcal{G}} \rangle = B$ ($E_{\mathcal{G}}$ is full).

Definition

The Cuntz–Pimsner algebra \mathcal{O}_X of a C*-correspondence X is the C*-algebra generated by a universal *Toeplitz covariant representation* of X.

 (B,ψ,A) - quantum graph $E_{\mathcal{G}}$ quantum edge correspondence

Theorem (Brannan-Hamidi-I.-Nelson-Wasilewski (2023))

When \mathcal{G} has no quantum sources, $L\mathcal{O}(\mathcal{G}) \cong \mathcal{O}_{E_{\mathcal{G}}}$.

This realization of $LO(\mathcal{G})$ as $\mathcal{O}_{E_{\mathcal{G}}}$ for lots of \mathcal{G} is a key ingredient to showing distinction from $O(\mathcal{G})$.

Theorem (Hamidi-I.-Nelson (2025))

When \mathcal{G} has no quantum sources, $\mathcal{O}(\mathcal{G})$ surjects onto a relative Cuntz–Pimsner algebra $\mathcal{O}(K, E_{\mathcal{G}})$, where $K = B \cdot A(B) \cdot B$.

Corollary

When \mathcal{G} has no quantum sources but a nontrivial set of quantum sinks (K is nontrivial), the canonical surjection $\mathcal{O}(K, E_{\mathcal{G}}) \to \mathcal{O}_{E_{\mathcal{G}}}$ is not injective. In particular, $\mathcal{O}(\mathcal{G})$ is not simple.

Simplicity of local quantum Cuntz-Krieger algebras

So far we have seen a few examples of quantum graphs whose local quantum Cuntz-Krieger algebras are simple:

- $K(B, \psi)$ by explicit isomorphism with a Cuntz algebra
- (M_n, ψ, A) where the span of Kraus operators for A has dimension >1 by showing Morita equivalence to a Cuntz algebra.

We can also use the Cuntz–Pimsner algebra realization of $\mathcal{LO}(\mathcal{G})$ to prove

- $LO(B, \psi, id)$ is non-simple by Schweizer's simplicity conditions.
- $LO(\mathcal{G}_0)$ is simple using Condition (S) from Eryüzlü, et. al.

Corollary

When \mathcal{G} has no quantum sources but a nontrivial set of quantum sinks (K is nontrivial), the canonical surjection $\mathcal{O}(K, E_{\mathcal{G}}) \to \mathcal{O}_{E_{\mathcal{G}}}$ is not injective. In particular, $\mathcal{O}(\mathcal{G})$ is not simple.

Corollary

When \mathcal{G} has no quantum sources but a nontrivial set of quantum sinks (K is nontrivial), the canonical surjection $\mathcal{O}(K, E_{\mathcal{G}}) \to \mathcal{O}_{E_{\mathcal{G}}}$ is not injective. In particular, $\mathcal{O}(\mathcal{G})$ is not simple.

Example

There exists a quantum graph \mathcal{G}_0 which has no quantum sources, a nontrivial quantum sink, and whose edge correspondence satisfies the conditions for simplicity of $\mathcal{O}_{E_{\mathcal{G}}}$. Details on arXiv. Since $\mathcal{O}(\mathcal{G})$ is non-simple, it is not isomorphic to $L\mathcal{O}(\mathcal{G})$.

Thank you!